java多线程Thread-per-Message模式详解

Thread-per-Message模式(这项工作就交给你了)

当你很忙碌的时候,这个时候公司楼下有个快递,于是你委托你的同事帮你拿一下你的快递,这样你就可以继续做自己的工作了

在Thread-Per-Message模式中,消息的委托端和执行端是不同的线程,消息的委托端会告诉执行端线程,这个工作就交给你了

Host类:

针对请求创建线程的类,主要通过开启新的线程,调用helper的handle,并将要打印的文字传递。

public class Host {
private final Helper helper = new Helper();
public void request(final int count,final char c){
System.out.println("request开始");
new Thread(){
public void run(){
helper.handle(count, c);
}
}.start();
System.out.println("request结束");
}
}

Helper类:

提供字符显示的功能,slowly方法模拟打印耗时

public class Helper {
public void handle(int count ,char c){
System.out.println("handle方法开始");
for(int i=0;i<count;i++){
slowly();
System.out.print(c);
}
System.out.println("");
System.out.println("handle方法结束");
}
private void slowly(){
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}

Main类:

创建Host的实例,并调用request的方法

public static void main(String[] args) {
System.out.println("main begin");
Host host = new Host();
host.request(10, 'A');
host.request(20, 'B');
host.request(30, 'C');
System.out.println("main End");
}

测试结果:

main begin

request方法开始了

request方法结束

request方法开始了

request方法结束

request方法开始了

request方法结束

main End

handle方法开始

handle方法开始

handle方法开始

BACBACACBACBACBACBACBACBACBA

handle方法结束

CBCBCBCBCBCBCBCBCBCBCB

handle方法结束

CCCCCCCCCC

handle方法结束

从运行的结果可以看出,request方法,并没有等待handle方法执行结束后再执行,而是调用handle方法后就返回到request方法中,直到运行结束,所以相当于request方法将所要进行的打印一定数量字符的工作转交给了handle方法,而request方法则可以再执行笨方法中的其他的语句,不必等待handle方法完成。这也同时告诉我们,当某些工作比较耗时时,则可以通过这种模式启动新的线程来执行处理。可以将此模式应用于服务器,这样就可以减少服务器的响应时间。

讲解一下进程和线程:

线程和进程最大的区别就是内存是否共存。

每个进程有自己的独立的内存空间,一个进程不可以擅自读取和写入其他的进程的内存,由于进程的内存空间是彼此独立的,所以一个进程无需担心被其他的进程所破坏。

线程之间是可以共存的,一个线程向实例中写入内容,其他线程就可以读取该实例的内容,由于多个线程可以访问同一个实例,我们就需要保证其正确执行互斥处理。

Host设计优化:

1.使用java.util.concurrent包下的ThreadFactory接口设计Host类

public class Host {
public void request(final int count,final char c){
System.out.println("request方法开始了");
threadFactory.newThread(
new Runnable() {
@Override
public void run() {
// TODO Auto-generated method stub
helper.handle(count, c);
}
 }
).start();;
System.out.println("request方法结束");
}
}

对应的Host实例化对象:

Host host = new Host(Executors.defaultThreadFactory());

这样设计的优势在于,原来的使用new创建的实例代码依赖于java.lang.Thread类,无法控制创建线程的部分,可复用性较低,假如使用threadFactory来保存对应类的对象,调用newThread方法创建新的线程,这样便实现了线程的创建,这样不再依赖于Thread类,而是取决于构造函数中传入的ThreadFactory对象,实现了控制线程创建的细节。

使用java.util.concurrent.Executor接口重新设计Host类:

前面的ThreadFactory接口隐藏了线程创建的细节,但是并未隐藏线程创建的操作,如果使用Executor接口,那么线程创建的操作也会被隐藏起来

public class Host{
private final Helper helper = new Helper();
private final Executor executor;
public Host(Executor executor){
this.executor = executor;
}
public void request(final int count,final char c){
System.out.println("request方法开始了");
executor.execute(new Runnable() {
@Override
public void run() {
// TODO Auto-generated method stub
helper.handle(count, c);
}
});
System.out.println("request方法结束");
}
}

使用java.util.concurrent.ScheduledExecutorService类创建,其可以实现调度运行

public class Host{
private final Helper helper = new Helper();
private final ScheduledExecutorService scheduledExecutorService;
public Host(ScheduledExecutorService scheduledExecutorService){
this.scheduledExecutorService = scheduledExecutorService;
}
public void request(final int count,final char c){
System.out.println("request方法开始了");
scheduledExecutorService.schedule(new Runnable() {
@Override
public void run() {
// TODO Auto-generated method stub
helper.handle(count, c);
}
}, 3L, TimeUnit.SECONDS);
System.out.println("request方法结束");
}
}

测试主函数入口:

ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(5);
Host host = new Host(
scheduledExecutorService
);
try {
host.request(10, 'A');
host.request(20, 'B');
host.request(30, 'C');
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}finally{
scheduledExecutorService.shutdown();
System.out.println("main End");
}

总结

Client 角色调用Host角色的request方法发来的请求,该请求的实际处理则交给Helper的handle去执行,然而,如果Client直接从request中调用handle方法,那么直到实际操作结束之前,都无法从handle方法返回(request返回),这样一来request的响应性能就下降了,因此,Host角色会启动用于处理来自Client角色请求的新线程,并让该线程来调用handle,这样一来发出请求的线程便可以立即从handle中返回。这就是Thread-Per-Message模式。

(0)

相关推荐

  • Java多线程死锁示例

    本文实例演示了Java多线程死锁.分享给大家供大家参考,具体如下: package com.damlab.fz; public class DeadLock { public static void main(String[] args) { Resource r1 = new Resource(); Resource r2 = new Resource(); // 每个线程都拥有r1,r2两个对象 Thread myTh1 = new MyThread1(r1, r2); Thread myT

  • Java使用Thread创建多线程并启动操作示例

    本文实例讲述了Java使用Thread创建多线程并启动操作.分享给大家供大家参考,具体如下: 按照教程实现了一个单线程的创建,但是单线程的创建于启动并不是很有实用价值的.毕竟直接在main方法中放着相关的执行操作本身也就是一种单线程的实现.接下来在之前用过的代码基础上稍作修改,形成如下代码: class ThreadDemo extends Thread { ThreadDemo(){}; ThreadDemo(String szName) { super(szName); } public v

  • 实例总结Java多线程编程的方法

    1.什么时候使用多线程编程 一个任务在正常情况下是按顺序执行的,但是如果当前任务里有多个相似进程块(例如for,while语句),我们就可以考虑把这些代码块抽出来并行运行,无需阻塞 2.实现多线程的几种方式 一种是继承Thread类重写run方法,另一种是实现Runnable接口重写run方法 启动多线程很多情况下是为了处理并发进程,此时对于部分实时性要求不是那么高的业务需求,我们还可以通过实现队列的方式,异步实现. 3.举例 继承Thread /** * * @ClassName: Threa

  • Java基础之多线程

    线程中run()和start()的区别: 对于Thread对象来说,当你调用的是start(),线程会被放到等待队列,等待CPU调度,不一定马上执行:无需等待run()方法执行完毕,可以直接执行下面的代码: 而调用的是run()的话,就是当做普通的方法调用,程序还是要顺序执行的: 新建线程的几种方式: 实现Runnable接口:里面实现run()方法: 然后把这个实现了Runnable接口的类就新建为一个Thread t = new Thread(new (实现Runnable接口的类)),调用

  • java多线程开发之通过对战游戏学习CyclicBarrier

    CyclicBarrier是java.util.concurrent包下面的一个工具类,字面意思是可循环使用(Cyclic)的屏障(Barrier),通过它可以实现让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,所有被屏障拦截的线程才会继续执行. 这篇文章将介绍CyclicBarrier这个同步工具类的以下几点 通过案例分析 两种不同构造函数测试 CyclicBarrier和CountDownLatch的区别 await方法及源码分析. 需求 继上一篇CountDo

  • java模拟多线程http请求代码分享

    java模拟http发送请求,第一种是HttpURLConnection发送post请求,第二种是使用httpclient模拟post请求, 实例代码: package test; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.concurrent.Exec

  • Java多线程通讯之wait,notify的区别详解

    下面通过代码给大家介绍java多线程通讯之wait notify的区别,具体内容如下所示: class Res{ public String username; public String sex; } class Out extends Thread{ Res res; public Out(Res res){ this.res=res; } @Override public void run() { //写操作 int count=0; while (true){ // synchroniz

  • Java多线程之Callable接口的实现

    1.接口的定义: public interface Callable<V> { V call() throws Exception; } 2.Callable和Runnable的异同 先看下Runnable接口的定义 public interface Runnable { public abstract void run(); } Callable的call()方法类似于Runnable接口中run()方法,都定义任务要完成的工作,实现这两个接口时要分别重写这两个方法,主要的不同之处是call

  • Java多线程中的Balking模式详解

    目录 1.场景 2.详细说明 3.Balking模式的本质:停止并返回 源代码如下: 总结 1.场景 自动保存功能: 为防止电脑死机,而定期将数据内容保存到文件中的功能. 2.详细说明 当数据内容被修改时,内容才会被保存.即当写入的内容与上次写入的内容一致时,其实就没有必要执行写入操作.也就是说,以”数据内容是否一致”作为守护条件.若数据内容相同,则不执行写入操作,直接返回. 3.Balking模式的本质:停止并返回 如果现在不合适执行该操作,或者没有必要执行该操作,就停止处理,直接返回—-Ba

  • Java多线程之生产者消费者模式详解

    目录 1.生产者消费者模型 2.实现生产者消费者模型 3.生产者消费者模型的作用是什么? 总结 问题: 1.什么是阻塞队列?如何使用阻塞队列来实现生产者-消费者模型? 2. 生产者消费者模型的作用是什么? 1. 生产者消费者模型 在生产者-消费者模式中,通常有两类线程,即生产者线程(若干个)和消费者线程(若干个).生产者线程向消息队列加入数据,消费者线程则从消息队列消耗数据.生产者和消费者.消息队列之间的关系结构图如图: (1) 消息队列可以用来平衡生产和消费的线程资源: (2) 生产者仅负责产

  • Java多线程中ReentrantLock与Condition详解

    一.ReentrantLock类 1.1什么是reentrantlock java.util.concurrent.lock中的Lock框架是锁定的一个抽象,它允许把锁定的实现作为Java类,而不是作为语言的特性来实现.这就为Lock的多种实现留下了空间,各种实现可能有不同的调度算法.性能特性或者锁定语义.ReentrantLock类实现了Lock,它拥有与synchronized相同的并发性和内存语义,但是添加了类似锁投票.定时锁等候和可中断锁等候的一些特性.此外,它还提供了在激烈争用情况下更

  • Java多线程之搞定最后一公里详解

    目录 绪论 一:线程安全问题 1.1 提出问题 1.2 不安全的原因 1.2.1 原子性 1.2.2 代码"优化" 二:如何解决线程不安全的问题 2.1 通过synchronized关键字 2.2 volatile 三:wait和notify关键字 3.1 wait方法 3.2 notify方法 3.3 wait和sleep对比(面试常考) 四:多线程案例 4.1 饿汉模式单线程 4.2 懒汉模式单线程 4.3 懒汉模式多线程低性能版 4.4懒汉模式-多线程版-二次判断-性能高 总结

  • Java多线程读写锁ReentrantReadWriteLock类详解

    目录 ReentrantReadWriteLock 读读共享 写写互斥 读写互斥 源码分析 写锁的获取与释放 读锁的获取与释放 参考文献 真实的多线程业务开发中,最常用到的逻辑就是数据的读写,ReentrantLock虽然具有完全互斥排他的效果(即同一时间只有一个线程正在执行lock后面的任务),这样做虽然保证了实例变量的线程安全性,但效率却是非常低下的.所以在JDK中提供了一种读写锁ReentrantReadWriteLock类,使用它可以加快运行效率. 读写锁表示两个锁,一个是读操作相关的锁

  • Java多线程案例之阻塞队列详解

    目录 一.阻塞队列介绍 1.1阻塞队列特性 1.2阻塞队列的优点 二.生产者消费者模型 2.1阻塞队列对生产者的优化 三.标准库中的阻塞队列 3.1Java提供阻塞队列实现的标准类 3.2Blockingqueue基本使用 四.阻塞队列实现 4.1阻塞队列的代码实现 4.2阻塞队列搭配生产者与消费者的代码实现 一.阻塞队列介绍 1.1阻塞队列特性 阻塞队列特性: 一.安全性 二.产生阻塞效果 阻塞队列是一种特殊的队列. 也遵守 “先进先出” 的原则.阻塞队列能是一种线程安全的数据结构, 并且具有

  • Java多线程之哲学家就餐问题详解

    一.题目 教材提供一个哲学家就餐问题的解决方案的框架.本问题要求通过pthreads 互斥锁来实现这个解决方案. 哲学家 首先创建 5 个哲学家,每个用数字 0~4 来标识.每个哲学家作为一个单独的 线程运行. 可使用 Pthreads 创建线程.哲学家在思考和吃饭之间交替.为了模拟这两种活动,请让线程休眠 1 到 3 秒钟.当哲学家想要吃饭时,他调用函数: pickup_forks(int philosopher _number) 其中,philosopher _number 为想吃饭哲学家的

  • java 多线程与并发之volatile详解分析

    目录 CPU.内存.缓存的关系 CPU缓存 什么是CPU缓存 为什么要有多级CPU Cache Java内存模型(Java Memory Model,JMM) JMM导致的并发安全问题 可见性 原子性 有序性 volatile volatile特性 volatile 的实现原理 总结 CPU.内存.缓存的关系 要理解JMM,要先从计算机底层开始,下面是一份大佬的研究报告 计算机在做一些我们平时的基本操作时,需要的响应时间是不一样的!如果我们计算一次a+b所需要的的时间: CPU读取内存获得a,1

  • Java多线程同步工具类CountDownLatch详解

    目录 简介 核心方法 CountDownLatch如何使用 CountDownLatch运行流程 运用场景 总结 简介 CountDownLatch是一个多线程同步工具类,在多线程环境中它允许多个线程处于等待状态,直到前面的线程执行结束.从类名上看CountDown既是数量递减的意思,我们可以把它理解为计数器. 核心方法 countDown():计数器递减方法. await():使调用此方法的线程进入等待状态,直到计数器计数为0时主线程才会被唤醒. await(long, TimeUnit):在

  • Java多线程模拟银行系统存钱问题详解

    目录 一.题目描述 二.解题思路 三.代码详解 多学一个知识点 一.题目描述 题目:模拟一个简单的银行系统,使用两个不同的线程向同一个账户存钱. 实现:使用特殊域变量volatile实现同步. 二.解题思路 创建一个类:SynchronizedBankFrame,继承JFrame类 写一个内部类Bank 定义一个account变量,来表示账户. deposit():一个存钱的方法 getAccount():显示账户余额的方法. 写一个内部类Transfer,实现Runnable接口 在run方法

随机推荐