C++基本算法思想之递推算法思想

递推算法是非常常用的算法思想,在数学计算等场合有着广泛的应用。递推算法适合有明显公式规律的场合。

递推算法基本思想
递推算法是一种理性思维莫斯的代表,根据已有的数据和关系,逐步推到而得到结果。递推算法的执行过程如下:

(1)根据已知结果和关系,求解中间结果。

(2)判断是否达到要求,如果没有达到,则继续根据已知结果和关系求解中间结果。如果满足要求,则表示寻找到一个正确答案。

递推算法需要用户知道答案和问题之间的逻辑关系。在许多数学问题中,都有明确的计算公式可以遵循,因此可以采用递推算法来实现。

递推算法示例
数学里面的斐波那契数列是一个使用递推算法的经典例子。

13世纪意大利数学家斐波那契的《算盘书》中记载了典型的兔子产仔问题,其大意如下:

如果一对一个月大的兔子以后每一个月都可以生一对小兔子,而一对新生的兔子出生两个月才可以生出小兔子。也就是,1月份出生,3月份开始产仔。那么假定一年内没有产生兔子死亡事件,那么1年之后共有多少对兔子呢?

1.递归算法
我们来分析一下兔子产仔问题。我们先逐月看每月兔子的对数。

第一个月:1对兔子;

第二个月:1对兔子;

第三个月:2对兔子;

第四个月:3对兔子;

第五个月:5对兔子;

第六个月:8对兔子;

………………

从上面可以看出,从第三个月开始,每个月的兔子总对数等于前两个月兔子数的总和。相应的计算公式如下:

第n个月兔子总数Fn=Fn-1+Fn-2。

这里初始第一个月的兔子数F1=1,第二个月的兔子数F2=1。

可以用递归公式来求解。为了通用型的方便,我们可以编写一个算法,用于计算斐波那契数列问题,按照这个思虑来编写相应的兔子产仔问题的求解算法,示例代码如下:


代码如下:

/*
输入参数n为经历的时间(单位是月),程序中通过递归调用来实现斐波那契数列的计算。
*/
int Fibonacci(n)
{
 int t1,t2;
 if(n>0)
 {
  if(n==1||n==2)
  {
   return 1;
  }
  else
  {
   t1=Fibonacci(n-1);
   t2=Fibonacci(n-2);
   return t1+t2;
  } 
 }
 else
 {
  return 0;
 }
}

递归算法求解兔子产仔问题
有了上述通过的兔子产仔问题算法后,我们可以求解任意的此类问题。这里给出完整的兔子产仔问题求解代码:


代码如下:

#include<iostream>
using namespace std;
/*
输入参数n为经历的时间(单位是月),程序中通过递归调用来实现斐波那契数列的计算。
*/
int Fibonacci(int n)
{
 int t1,t2;
 if(n>0)
 {
  if(n==1||n==2)
  {
   return 1;
  }
  else
  {
   t1=Fibonacci(n-1);   //递归调用获取F(n-1)
   t2=Fibonacci(n-2);   //递归调用获取F(n-2)
   return t1+t2;
  } 
 }
 else
 {
  return 0;
 }
}
int main()
{
 int n,num;
 cout<<"递推算法求解兔子产仔问题:"<<endl;
 cout<<"请输入时间:"<<endl;
 cin>>n;
 num=Fibonacci(n);
 cout<<"经过"<<n<<"个月之后"<<endl;
 cout<<"兔子的数量为:"<<num<<"对"<<endl;
 return 0;
}

执行该程序,用户输入12,得到如图结果:

(0)

相关推荐

  • C++算法之海量数据处理方法的总结分析

    海量数据处理中常用到的技术 1. Bloom Filtering基本的Bloom Filtering支持快速的插入和查找操作,是一种hash表技术.基本的数据结构非常简单,容量为m的位数组,k个hash函数,将输入的n个元素存储在位数组里面.每次插入一个新的元素,先计算该元素的k个hash指,将位数组对应hash值位置为1. 查找某个元素时,同样的先计算k个hash值,然后查询看是否对应位数组中得k位是否都是1,是则断定元素存在.基本的Bloom Filtering算法可以用于允许误差的快速判重

  • C++实现汉诺塔算法经典实例

    本文所述为汉诺塔算法的C++代码的经典实现方法. 汉诺塔问题描述:3个柱为a.b.c,圆盘最初在a柱,借助b柱移到c柱.需要你指定圆盘数. 具体实现代码如下: #include <iostream> using namespace std; int times = 0; //全局变量,搬动次数 //第n个圆盘从x柱搬到z柱 void move(int n, char x, char z) { cout << "第" << ++times <&l

  • C++泛型算法的一些总结

    泛型算法的一些总结1.每个泛型算法的实现都独立于单独的容器,并且不依赖于容器存储的元素类型. 2.泛型算法从不直接添加或删除元素. 3.与容器的类型无关,只在一点上隐式地依赖元素类型:必须能够对元素做比较运算. A.需要某种遍历集合的方式:能够从一个元素向前移到下一个元素. B.必须能够知道是否到达了集合的末尾. C.必须能够对容器中的每一个元素与被查找的元素进行比较. D.需要一个类型来指示元素在容器中的位置,或者表示找不到该元素. 4.迭代器将算法和容器绑定起来.算法基于迭代器及其操作实现,

  • C++实现迷宫算法实例解析

    本文以实例形式描述了C++实现迷宫算法.本例中的迷宫是一个矩形区域,它有一个入口和一个出口.在迷宫的内部包含不能穿越的墙或障碍.障碍物沿着行和列放置,它们与迷宫的矩形边界平行.迷宫的入口在左上角,出口在右下角 本实例迷宫算法的功能主要有: 1.自动生成10*10迷宫图 2.判断是否有迷宫出口,并且画出路线图 具体实现代码如下: # include <iostream> # include <list> # include <sys/timeb.h> # include

  • 采用C++实现区间图着色问题(贪心算法)实例详解

    本文所述算法即假设要用很多个教室对一组活动进行调度.我们希望使用尽可能少的教室来调度所有活动.采用C++的贪心算法,来确定哪一个活动使用哪一间教室. 对于这个问题也常被称为区间图着色问题,即相容的活动着同色,不相容的着不同颜色,使得所用颜色数最少. 具体实现代码如下: //贪心算法 #include "stdafx.h" #include<iostream> #define N 100 using namespace std; struct Activity { int n

  • C++实现各种排序算法类汇总

    C++可实现各种排序算法类,比如直接插入排序.折半插入排序.Shell排序.归并排序.简单选择排序.基数排序.对data数组中的元素进行希尔排序.冒泡排序.递归实现.堆排序.用数组实现的基数排序等. 具体代码如下: #ifndef SORT_H #define SORT_H #include <iostream> #include <queue> using namespace std; // 1.直接插入排序 template<class ElemType> void

  • c++实现MD5算法实现代码

    测试结果和百度百科测试例子一致. 实现过程中需要注意事项:最后把四个变量A B C D 链接成结果时 ,注意变量高低位的先后顺序,具体参考 LinkResult()方法. md5.h #ifndef _MD5_H_ #define _MD5_H_ #include <iostream> #include <string> using namespace std; class MD5 { public: typedef unsigned char uchar8; //make sur

  • C++实现顺序排序算法简单示例代码

    本文实例讲述了最直接的顺序排序法VC++示例代码,还记得以前上学时候这是计算机的必考题,而且在排序算法中,顺序排序似乎是最简单的了,也是最容易掌握的.现在列出来让大家重新回顾一下! 具体代码如下: //顺序排序 void InsertSort(int r[], int n){ for (int i=2; i<n; i++){ r[0]=r[i]; //设置哨兵 for (int j=i-1; r[0]<r[j]; j--) //寻找插入位置 r[j+1]=r[j]; //记录后移 r[j+1]

  • C++遗传算法类文件实例分析

    本文所述为C++实现的遗传算法的类文件实例.一般来说遗传算法可以解决许多问题,希望本文所述的C++遗传算法类文件,可帮助你解决更多问题,并且代码中为了便于读者更好的理解,而加入了丰富的注释内容,是新手学习遗传算法不可多得的参考代码. 具体代码如下所示: #include "stdafx.h" #include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #inc

  • VC++实现选择排序算法简单示例

    本文以一个非常简单的实例说明VC++选择排序算法的实现方法,对n个记录进行n-1趟简单选择排序,在无序区中选取最小记录. 具体实现代码如下: #include<iostream> using namespace std; //简单选择排序 void SelectSort(int r[ ], int n) { int i; int j; int index; int temp; for (i=0; i<n-1; i++) //对n个记录进行n-1趟简单选择排序 { index=i; for

  • k均值算法c++语言实现代码

    复制代码 代码如下: //k-mean.h #ifndef KMEAN_HEAD #define KMEAN_HEAD #include <vector> #include <map> //空间点的定义 class Node {     public:        double pos_x;        double pos_y;        double pos_z;      Node()      {          pos_x = 0.0;          pos

随机推荐