理解Python中的With语句

有一些任务,可能事先需要设置,事后做清理工作。对于这种场景,Python的with语句提供了一种非常方便的处理方式。一个很好的例子是文件处理,你需要获取一个文件句柄,从文件中读取数据,然后关闭文件句柄。 Without the with statement, one would write something along the lines of: 如果不用with语句,代码如下:

file = open("/tmp/foo.txt")
data = file.read()
file.close()

这里有两个问题。一是可能忘记关闭文件句柄;二是文件读取数据发生异常,没有进行任何处理。下面是处理异常的加强版本:

file = open("/tmp/foo.txt")
try:
  data = file.read()
finally:
  file.close()

虽然这段代码运行良好,但是太冗长了。这时候就是with一展身手的时候了。除了有更优雅的语法,with还可以很好的处理上下文环境产生的异常。下面是with版本的代码:

with open("/tmp/foo.txt") as file:
  data = file.read()

with如何工作?
 这看起来充满魔法,但不仅仅是魔法,Python对with的处理还很聪明。基本思想是with所求值的对象必须有一个__enter__()方法,一个__exit__()方法。

紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量。当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法。 This can be demonstrated with the following example: 下面例子可以具体说明with如何工作:

#!/usr/bin/env python
# with_example01.py

class Sample:
  def __enter__(self):
    print "In __enter__()"
    return "Foo"

  def __exit__(self, type, value, trace):
    print "In __exit__()"

def get_sample():
  return Sample()

with get_sample() as sample:
  print "sample:", sample

运行代码,输出如下

bash-3.2$ ./with_example01.py
In __enter__()
sample: Foo
In __exit__()

正如你看到的, 1. __enter__()方法被执行 2. __enter__()方法返回的值 - 这个例子中是"Foo",赋值给变量'sample' 3. 执行代码块,打印变量"sample"的值为 "Foo" 4. __exit__()方法被调用 with真正强大之处是它可以处理异常。可能你已经注意到Sample类的__exit__方法有三个参数- val, type 和 trace。 这些参数在异常处理中相当有用。我们来改一下代码,看看具体如何工作的。

#!/usr/bin/env python
# with_example02.py

class Sample:
  def __enter__(self):
    return self

  def __exit__(self, type, value, trace):
    print "type:", type
    print "value:", value
    print "trace:", trace

  def do_something(self):
    bar = 1/0
    return bar + 10

with Sample() as sample:
  sample.do_something()

这没有任何关系,只要紧跟with后面的语句所返回的对象有__enter__()和__exit__()方法即可。此例中,Sample()的__enter__()方法返回新创建的Sample对象,并赋值给变量sample。 When executed: 代码执行后:

bash-3.2$ ./with_example02.py
type: <type 'exceptions.ZeroDivisionError'>
value: integer division or modulo by zero
trace: <traceback object at 0x1004a8128>
Traceback (most recent call last):
 File "./with_example02.py", line 19, in <module>
  sample.do_something()
 File "./with_example02.py", line 15, in do_something
  bar = 1/0
ZeroDivisionError: integer division or modulo by zero

实际上,在with后面的代码块抛出任何异常时,__exit__()方法被执行。正如例子所示,异常抛出时,与之关联的type,value和stack trace传给__exit__()方法,因此抛出的ZeroDivisionError异常被打印出来了。

开发库时,清理资源,关闭文件等等操作,都可以放在__exit__方法当中。

因此,Python的with语句是提供一个有效的机制,让代码更简练,同时在异常产生时,清理工作更简单。

以上就是关于Python中的With语句的理解,希望对大家的学习有所帮助。

(0)

相关推荐

  • Python中的with语句与上下文管理器学习总结

    0.关于上下文管理器 上下文管理器是可以在with语句中使用,拥有__enter__和__exit__方法的对象. with manager as var: do_something(var) 相当于以下情况的简化: var = manager.__enter__() try: do_something(var) finally: manager.__exit__() 换言之,PEP 343中定义的上下文管理器协议允许将无聊的try...except...finally结构抽象到一个单独的类中,

  • Python中的with...as用法介绍

    这个语法是用来代替传统的try...finally语法的. 复制代码 代码如下: with EXPRESSION [ as VARIABLE] WITH-BLOCK 基本思想是with所求值的对象必须有一个__enter__()方法,一个__exit__()方法. 紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量.当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法. 复制代码 代码如下: fil

  • Python 的 with 语句详解

    一.简介 with是从Python 2.5 引入的一个新的语法,更准确的说,是一种上下文的管理协议,用于简化try-except-finally的处理流程.with通过__enter__方法初始化,然后在__exit__中做善后以及处理异常.对于一些需要预先设置,事后要清理的一些任务,with提供了一种非常方便的表达. with的基本语法如下,EXPR是一个任意表达式,VAR是一个单一的变量(可以是tuple),"as VAR"是可选的. 复制代码 代码如下: with EXPR as

  • Python with用法实例

    python中with可以明显改进代码友好度,比如: 复制代码 代码如下: with open('a.txt') as f:      print f.readlines() 为了我们自己的类也可以使用with, 只要给这个类增加两个函数__enter__, __exit__即可: 复制代码 代码如下: >>> class A:      def __enter__(self):          print 'in enter'      def __exit__(self, e_t,

  • 详解Python中contextlib上下文管理模块的用法

    咱们用的os模块,读取文件的时候,其实他是含有__enter__ __exit__ .  一个是with触发的时候,一个是退出的时候. with file('nima,'r') as f: print f.readline() 那咱们自己再实现一个标准的可以with的类. 我个人写python的时候,喜欢针对一些需要有关闭逻辑的代码,构造成with的模式 . #encoding:utf-8 class echo: def __enter__(self): print 'enter' def __

  • Python深入学习之上下文管理器

    上下文管理器(context manager)是Python2.5开始支持的一种语法,用于规定某个对象的使用范围.一旦进入或者离开该使用范围,会有特殊操作被调用 (比如为对象分配或者释放内存).它的语法形式是with...as... 关闭文件 我们会进行这样的操作:打开文件,读写,关闭文件.程序员经常会忘记关闭文件.上下文管理器可以在不需要文件的时候,自动关闭文件. 下面我们看一下两段程序: 复制代码 代码如下: # without context manager f = open("new.t

  • Python with的用法

    在Python中,with关键字是一个替你管理实现上下文协议对象的好东西.例如:file等.示例如下: from __future__ import with_statement with open('cardlog.txt','r') as item : for line in item : print line; 在file的结束,会自动关闭该文件句柄.   在python2.6中,with正式成为了关键字 所以在python2.5以前,要利用with的话,需要使用: from __futu

  • 深入解析Python中的上下文管理器

    1. 上下文管理器是什么? 举个例子,你在写Python代码的时候经常将一系列操作放在一个语句块中: (1)当某条件为真 – 执行这个语句块 (2)当某条件为真 – 循环执行这个语句块 有时候我们需要在当程序在语句块中运行时保持某种状态,并且在离开语句块后结束这种状态. 所以,事实上上下文管理器的任务是 – 代码块执行前准备,代码块执行后收拾. 上下文管理器是在Python2.5加入的功能,它能够让你的代码可读性更强并且错误更少.接下来,让我们来看看该如何使用. 2. 如何使用上下文管理器? 看

  • 详解Python中with语句的用法

    引言 with 语句是从 Python 2.5 开始引入的一种与异常处理相关的功能(2.5 版本中要通过 from __future__ import with_statement 导入后才可以使用),从 2.6 版本开始缺省可用(参考 What's new in Python 2.6? 中 with 语句相关部分介绍).with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的"清理"操作,释放资源,比如文件使用后自动关闭.线程中锁的自动获取和释放等. 术

  • 理解Python中的With语句

    有一些任务,可能事先需要设置,事后做清理工作.对于这种场景,Python的with语句提供了一种非常方便的处理方式.一个很好的例子是文件处理,你需要获取一个文件句柄,从文件中读取数据,然后关闭文件句柄. Without the with statement, one would write something along the lines of: 如果不用with语句,代码如下: file = open("/tmp/foo.txt") data = file.read() file.

  • 详解Python中的循环语句的用法

    一.简介 Python的条件和循环语句,决定了程序的控制流程,体现结构的多样性.须重要理解,if.while.for以及与它们相搭配的 else. elif.break.continue和pass语句. 二.详解 1.if语句 Python中的if子句由三部分组成:关键字本身.用于判断结果真假的条件表达式以及当表达式为真或者非零时执行的代码块.if 语句的语法如下: if expression: expr_true_suite if 语句的expr_true_suite代码块只有在条件表达式的结

  • python中list循环语句用法实例

    本文实例讲述了python中list循环语句用法.分享给大家供大家参考.具体用法分析如下: Python 的强大特性之一就是其对 list 的解析,它提供一种紧凑的方法,可以通过对 list 中的每个元素应用一个函数,从而将一个 list 映射为另一个 list. 实例 复制代码 代码如下: a = ['cat', 'window', 'defenestrate'] for x in a:      print x, len(x) for x in [1, 2, 3]: print x,    

  • 彻彻底底地理解Python中的编码问题

    Python处理文本的功能非常强大,但是如果是初学者,没有搞清楚python中的编码机制,也经常会遇到乱码或者decode error.本文的目的是简明扼要地说明python的编码机制,并给出一些建议. 问题1:问题在哪里? 问题是我们的靶子,心中没有问题去学习就会抓不住重点. 本文使用的编程环境是centos6.7,python2.7.我们在shell中键入python以打开python命令行,并键入如下两句话: s = "中国zg" e = s.encode("utf-8

  • 如何理解Python中包的引入

    Python的from import *和from import *,它们的功能都是将包引入使用,但是它们是怎么执行的以及为什么使用这种语法呢? 从一模块导入全部功能 from import * means意味着"我希望能访问中我有权限访问的全部名称".例如以下代码something.py: # something.py public_variable = 42 _private_variable = 141 def public_function(): print("I'm

  • Python中的 if 语句及使用方法

    目录 一. 条件测试 1.比较字符串相等或不相等 2.比较数字 3.检查多个条件 4.检查特定值是否在列表中 二.if 语句 1.简单的if语句 2. if-else 语句 3. if-elif-else 语句 三.使用 if 语句处理列表 1.使用 if 语句检查列表中的特殊元素 2.检查列表是否为空 3.使用多个列表 前言: 本文的主要内容是介绍Python中 if 语句及其使用,包括条件测试.if -else 语句.if -elif-else 语句以及使用 if 语句处理列表操作,文中附有

  • Python中的 if 语句及使用方法

    目录 一. 条件测试 1.比较字符串相等或不相等 2.比较数字 3.检查多个条件 4.检查特定值是否在列表中 二.if 语句 1.简单的if语句 2. if-else 语句 3. if-elif-else 语句 三.使用 if 语句处理列表 1.使用 if 语句检查列表中的特殊元素 2.检查列表是否为空 3.使用多个列表 前言: 本文的主要内容是介绍Python中 if 语句及其使用,包括条件测试.if -else 语句.if -elif-else 语句以及使用 if 语句处理列表操作,文中附有

  • 深入理解python中函数传递参数是值传递还是引用传递

    目前网络上大部分博客的结论都是这样的: Python不允许程序员选择采用传值还是传 引用.Python参数传递采用的肯定是"传对象引用"的方式.实际上,这种方式相当于传值和传引用的一种综合.如果函数收到的是一个可变对象(比如字典 或者列表)的引用,就能修改对象的原始值--相当于通过"传引用"来传递对象.如果函数收到的是一个不可变对象(比如数字.字符或者元组)的引用,就不能 直接修改原始对象--相当于通过"传值"来传递对象. 你可以在很多讨论该问题

  • 深入理解python中的浅拷贝和深拷贝

    在讲什么是深浅拷贝之前,我们先来看这样一个现象: a = ['scolia', 123, [], ] b = a[:] b[2].append(666) print a print b 为什么我只对b进行修改,却影响到了a呢?看过我在之前的文章中就说过:序列中保存的都是内存的引用. 所以,当我们通过b去修改里面的空列表的时候,其实就是修改内存中的同一个对象,所以会影响到a. a = ['scolia', 123, [], ] b = a[:] print id(a), id(a[0]), id(

  • 全面理解Python中self的用法

    刚开始学习Python的类写法的时候觉得很是麻烦,为什么定义时需要而调用时又不需要,为什么不能内部简化从而减少我们敲击键盘的次数?你看完这篇文章后就会明白所有的疑问. self代表类的实例,而非类. 实例来说明: class Test: def prt(self): print(self) print(self.__class__) t = Test() t.prt() 执行结果如下 <__main__.Test object at 0x000000000284E080> <class

随机推荐