python使用pandas抽样训练数据中某个类别实例

废话真的一句也不想多说,直接看代码吧!

# -*- coding: utf-8 -*- 

import numpy
from sklearn import metrics
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn import linear_model
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn import cross_validation
from sklearn import preprocessing
import scipy as sp
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import SelectKBest ,chi2
import pandas as pd
from sklearn.preprocessing import OneHotEncoder
#import iris_data 

'''
creativeID,userID,positionID,clickTime,conversionTime,connectionType,
telecomsOperator,appPlatform,sitesetID,positionType,age,gender,
education,marriageStatus,haveBaby,hometown,residence,appID,appCategory,label
'''

def test():
 df = pd.read_table("/var/lib/mysql-files/data1.csv", sep=",")
 df1 = df[["connectionType","telecomsOperator","appPlatform","sitesetID",
    "positionType","age","gender","education","marriageStatus",
    "haveBaby","hometown","residence","appCategory","label"]]
 print df1["label"].value_counts()
 N_data = df1[df1["label"]==0]
 P_data = df1[df1["label"]==1]
 N_data = N_data.sample(n=P_data.shape[0], frac=None, replace=False, weights=None, random_state=2, axis=0)
 #print df1.loc[:,"label"]==0
 print P_data.shape
 print N_data.shape

 data = pd.concat([N_data,P_data])
 print data.shape
 data = data.sample(frac=1).reset_index(drop=True)
 print data[["label"]]
 return

补充拓展:pandas实现对dataframe抽样

随机抽样

import pandas as pd
#对dataframe随机抽取2000个样本
pd.sample(df, n=2000)

分层抽样

利用sklean中的函数灵活进行抽样

from sklearn.model_selection import train_test_split
#y是在X中的某一个属性列
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, stratify=y)

以上这篇python使用pandas抽样训练数据中某个类别实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python实现的分层随机抽样案例

    昨天写了一段用来做分层随机抽样的代码,很粗糙,不过用公司的2万名导购名单试了一下,结果感人,我觉得此刻的我已经要上天了,哈哈哈哈哈哈 代码如下: #分层随机抽样 stratified sampling import xlrd, xlwt, time, random xl = xlrd.open_workbook(r'C:\Users\Administrator\Desktop\分层抽样.xlsx') xl_sht1 = xl.sheets()[0] xl_sht1_nrows = xl_sht1

  • 使用Pandas对数据进行筛选和排序的实现

    筛选和排序是Excel中使用频率最多的功能,通过这个功能可以很方便的对数据表中的数据使用指定的条件进行筛选和计算,以获得需要的结果.在Pandas中通过.sort和.loc函数也可以实现这两 个功能..sort函数可以实现对数据表的排序操作,.loc函数可以实现对数据表的筛选操作.本篇文章将介绍如果通过Pandas的这两个函数完成Excel中的筛选和排序操作. 首选导入需要使用的Pandas库和numpy库,读取并创建数据表,将数据表命名为lc. import pandas as pd impo

  • python数据预处理 :数据抽样解析

    何为数据抽样: 抽样是数据处理的一种基本方法,常常伴随着计算资源不足.获取全部数据困难.时效性要求等情况使用. 抽样方法: 一般有四种方法: 随机抽样 直接从整体数据中等概率抽取n个样本.这种方法优势是,简单.好操作.适用于分布均匀的场景:缺点是总体大时无法一一编号 系统抽样 又称机械.等距抽样,将总体中个体按顺序进行编号,然后计算出间隔,再按照抽样间隔抽取个体.优势,易于理解.简便易行.缺点是,如有明显分布规律时容易产生偏差. 群体抽样 总体分群,在随机抽取几个小群代表总体.优点是简单易行.便

  • python使用pandas抽样训练数据中某个类别实例

    废话真的一句也不想多说,直接看代码吧! # -*- coding: utf-8 -*- import numpy from sklearn import metrics from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn import linear_model from sklearn.datasets import load_iris from sklearn.

  • python使用pandas处理大数据节省内存技巧(推荐)

    一般来说,用pandas处理小于100兆的数据,性能不是问题.当用pandas来处理100兆至几个G的数据时,将会比较耗时,同时会导致程序因内存不足而运行失败. 当然,像Spark这类的工具能够胜任处理100G至几个T的大数据集,但要想充分发挥这些工具的优势,通常需要比较贵的硬件设备.而且,这些工具不像pandas那样具有丰富的进行高质量数据清洗.探索和分析的特性.对于中等规模的数据,我们的愿望是尽量让pandas继续发挥其优势,而不是换用其他工具. 本文我们讨论pandas的内存使用,展示怎样

  • Python使用pandas将表格数据进行处理

    目录 前言 一.构建es库中的数据 1.1 创建索引 1.2 插入数据 1.3 查询数据 二.对excel表格中的数据处理操作 2.1 导出es查询的数据 前言 任务描述: 当前有一份excel表格数据,里面存在缺失值,需要对缺失的数据到es数据库中进行查找并对其进行把缺失的数据进行补全. excel表格数据如下所示: 一.构建es库中的数据 1.1 创建索引 # 创建physical_examination索引 PUT /physical_examination { "settings&quo

  • python3 pandas 读取MySQL数据和插入的实例

    python 代码如下: # -*- coding:utf-8 -*- import pandas as pd import pymysql import sys from sqlalchemy import create_engine def read_mysql_and_insert(): try: conn = pymysql.connect(host='localhost',user='user1',password='123456',db='test',charset='utf8')

  • python读取多层嵌套文件夹中的文件实例

    由于工作安排,需要读取多层文件夹下嵌套的文件,文件夹的结构如下图所示: 想到了递归函数,使用python的os.path.isfile方法判断当前是不是可执行文件,如果不是再用os.listdir方法将子目录循环判断. 代码如下 import os path = 'abc' path_read = [] #path_read saves all executable files def check_if_dir(file_path): temp_list = os.listdir(file_pa

  • python将pandas datarame保存为txt文件的实例

    CSV means Comma Separated Values. It is plain text (ansi). The CSV ("Comma Separated Value") file format is often used to exchange data between disparate applications. The file format, as it is used in Microsoft Excel, has become a pseudo standa

  • python模拟点击在ios中实现的实例讲解

    我们都知道因为操作系统的不同,很多游戏区分为安卓和苹果两个版本.那么之前学会python模拟点击的小伙伴开始担心,如果手机是ios版本那还能使用吗?这个问题小编进行了测试,小伙伴们完全不用忧虑ios版本,因为经过测试的结果是可以使用的.具体在ios中模拟点击使用的细节大家也可以看看了解一下. 代码示例 Python Version import socket import time # event types TOUCH_UP = 0 TOUCH_DOWN = 1 TOUCH_MOVE = 2

  • Python利用pandas处理Excel数据的应用详解

    最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做自动化测试的时候,如果涉及到数据的读取和存储,那么而利用pandas就会非常高效,基本上3行代码可以搞定你20行代码的操作!该教程仅仅限于结合柠檬班的全栈自动化测试课程来讲解下pandas在项目中的应用,这仅仅只是冰山一角,希望大家可以踊跃的去尝试和探索! 一.安装环境: 1:pandas依赖处理Excel的xlrd模块,所以我们需要提前安装这个,安装命令

  • Python变量、数据类型、数据类型转换相关函数用法实例详解

    本文实例讲述了Python变量.数据类型.数据类型转换相关函数用法.分享给大家供大家参考,具体如下: python变量的使用不需要进行类型声明(类型名 变量名),给一个变量名赋什么值就是什么类型. 变量的赋值使用 = 说明:虽然python声明变量时没有一个类型来圈注,但它并不是弱类型语言,相反,它是一门强类型语言. 弱类型的语言的东西没有明显的类型,它能随着环境的不同自动变换类型: 而强类型则没这样的规定,不同类型间的操作有严格定义,只有相同类型的变量才能操作 为什么说 Python 是强类型

  • python获取全国最新省市区数据并存入表实例代码

    本文通过调取高德行政区划查询接口,获取最新的数据信息(省.市.区.经纬度.行政级别.城市编码.行政编码等),并通过mysql.connector存入mysql数据库 表结构设计如下: CREATE TABLE `districts` ( `districtId` int(11) NOT NULL AUTO_INCREMENT, `districtPid` int(11) DEFAULT NULL COMMENT '上级ID', `name` varchar(32) DEFAULT NULL CO

随机推荐