C++实现Dijkstra算法

本文实例为大家分享了C++实现Dijkstra算法的具体代码,供大家参考,具体内容如下

#include <iostream>
#include <limits>
using namespace std;

struct Node { //定义表结点
 int adjvex; //该边所指向的顶点的位置
 int weight;// 边的权值
 Node *next; //下一条边的指针
};

struct HeadNode{ // 定义头结点
  int nodeName; // 顶点信息
  int inDegree; // 入度
  int d; //表示当前情况下起始顶点至该顶点的最短路径,初始化为无穷大
  bool isKnown; //表示起始顶点至该顶点的最短路径是否已知,true表示已知,false表示未知
  int parent; //表示最短路径的上一个顶点
  Node *link; //指向第一条依附该顶点的边的指针
};

//G表示指向头结点数组的第一个结点的指针
//nodeNum表示结点个数
//arcNum表示边的个数
void createGraph(HeadNode *G, int nodeNum, int arcNum) {
 cout << "开始创建图(" << nodeNum << ", " << arcNum << ")" << endl;
 //初始化头结点
 for (int i = 0; i < nodeNum; i++) {
  G[i].nodeName = i+1; //位置0上面存储的是结点v1,依次类推
  G[i].inDegree = 0; //入度为0
  G[i].link = NULL;
 }
 for (int j = 0; j < arcNum; j++) {
  int begin, end, weight;
  cout << "请依次输入 起始边 结束边 权值: ";
  cin >> begin >> end >> weight;
  // 创建新的结点插入链接表
  Node *node = new Node;
  node->adjvex = end - 1;
  node->weight = weight;
  ++G[end-1].inDegree; //入度加1
  //插入链接表的第一个位置
  node->next = G[begin-1].link;
  G[begin-1].link = node;
 }
}

void printGraph(HeadNode *G, int nodeNum) {
 for (int i = 0; i < nodeNum; i++) {
  cout << "结点v" << G[i].nodeName << "的入度为";
  cout << G[i].inDegree << ", 以它为起始顶点的边为: ";
  Node *node = G[i].link;
  while (node != NULL) {
   cout << "v" << G[node->adjvex].nodeName << "(权:" << node->weight << ")" << " ";
   node = node->next;
  }
  cout << endl;
 }
}

//得到begin->end权重
int getWeight(HeadNode *G, int begin, int end) {
 Node *node = G[begin-1].link;
 while (node) {
  if (node->adjvex == end - 1) {
   return node->weight;
  }
  node = node->next;
 }
}

//从start开始,计算其到每一个顶点的最短路径
void Dijkstra(HeadNode *G, int nodeNum, int start) {
 //初始化所有结点
 for (int i = 0; i < nodeNum; i++) {
  G[i].d = INT_MAX; //到每一个顶点的距离初始化为无穷大
  G[i].isKnown = false; // 到每一个顶点的距离为未知数
 }
 G[start-1].d = 0; //到其本身的距离为0
 G[start-1].parent = -1; //表示该结点是起始结点
 while(true) {
  //==== 如果所有的结点的最短距离都已知, 那么就跳出循环
  int k;
  bool ok = true; //表示是否全部ok
  for (k = 0; k < nodeNum; k++) {
   //只要有一个顶点的最短路径未知,ok就设置为false
   if (!G[k].isKnown) {
    ok = false;
    break;
   }
  }
  if (ok) return;
  //==========================================

  //==== 搜索未知结点中d最小的,将其变为known
  //==== 这里其实可以用最小堆来实现
  int i;
  int minIndex = -1;
  for (i = 0; i < nodeNum; i++) {
   if (!G[i].isKnown) {
    if (minIndex == -1)
     minIndex = i;
    else if (G[minIndex].d > G[i].d)
     minIndex = i;
   }
  }
  //===========================================

  cout << "当前选中的结点为: v" << (minIndex+1) << endl;
   G[minIndex].isKnown = true; //将其加入最短路径已知的顶点集
   // 将以minIndex为起始顶点的所有的d更新
   Node *node = G[minIndex].link;
   while (node != NULL) {
    int begin = minIndex + 1;
    int end = node->adjvex + 1;
    int weight = getWeight(G, begin, end);
    if (G[minIndex].d + weight < G[end-1].d) {
     G[end-1].d = G[minIndex].d + weight;
     G[end-1].parent = minIndex; //记录最短路径的上一个结点
    }
    node = node->next;
   }
 }
}

//打印到end-1的最短路径
void printPath(HeadNode *G, int end) {
 if (G[end-1].parent == -1) {
  cout << "v" << end;
 } else if (end != 0) {
  printPath(G, G[end-1].parent + 1); // 因为这里的parent表示的是下标,从0开始,所以要加1
  cout << " -> v" << end;
 }
}
int main() {
 HeadNode *G;
 int nodeNum, arcNum;
 cout << "请输入顶点个数,边长个数: ";
 cin >> nodeNum >> arcNum;
 G = new HeadNode[nodeNum];
 createGraph(G, nodeNum, arcNum);

 cout << "=============================" << endl;
 cout << "下面开始打印图信息..." << endl;
 printGraph(G, nodeNum); 

 cout << "=============================" << endl;
 cout << "下面开始运行dijkstra算法..." << endl;
 Dijkstra(G, nodeNum, 1);

 cout << "=============================" << endl;
 cout << "打印从v1开始所有的最短路径" << endl;
 for (int k = 2; k <= nodeNum; k++) {
  cout << "v1到v" << k << "的最短路径为" << G[k-1].d << ": ";
  printPath(G, k);
  cout << endl;
 }
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • C++用Dijkstra(迪杰斯特拉)算法求最短路径

    算法介绍 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低. 算法思想 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增

  • C++求所有顶点之间的最短路径(用Dijkstra算法)

    本文实例为大家分享了C++求所有顶点之间最短路径的具体代码,供大家参考,具体内容如下 一.思路: 不能出现负权值的边 (1)轮流以每一个顶点为源点,重复执行Dijkstra算法n次,就可以求得每一对顶点之间的最短路径及最短路径长度,总的执行时间为O(n的3次方) (2)另一种方法:用Floyd算法,总的执行时间为O(n的3次方)(另一文章会写) 二.实现程序: 1.Graph.h:有向图 #ifndef Graph_h #define Graph_h #include <iostream> u

  • Dijkstra算法最短路径的C++实现与输出路径

    某个源点到其余各顶点的最短路径 这个算法最开始心里怕怕的,不知道为什么,花了好长时间弄懂了,也写了一遍,又遇到时还是出错了,今天再次写它,心里没那么怕了,耐心研究,懂了之后会好开心的,哈哈 Dijkstra算法: 图G 如图:若要求从顶点1到其余各顶点的最短路径,该咋求: 迪杰斯特拉提出"按最短路径长度递增的次序"产生最短路径. 首先,在所有的这些最短路径中,长度最短的这条路径必定只有一条弧,且它的权值是从源点出发的所有弧上权的最小值,例如:在图G中,从源点1出发有3条弧,其中以弧(1

  • C++实现Dijkstra(迪杰斯特拉)算法

    Dijkstra算法 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,是广度优先算法的一种,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.其基本原理是:每次新扩展一个距离最短的点,更新与其相邻的点的距离.当所有边权都为正时,由于不会存在一个距离更短的没扩展过的点,所以这个点的距离永远不会再被改变,因而保证了算法的正确性.不过根据这个原理,用Dijkstra求最短路的图不能有负权边,因为扩展到负权边的时候会产生更短的距离,有可能就破

  • java实现最短路径算法之Dijkstra算法

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是"贪心算法"的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备: 1.表示图的数据结构 用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵. 图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 从上面可以看出,无

  • 基于Java实现的Dijkstra算法示例

    本文以实例形式介绍了基于Java实现的Dijkstra算法,相信对于读者研究学习数据结构域算法有一定的帮助. Dijkstra提出按各顶点与源点v间的路径长度的递增次序,生成到各顶点的最短路径的算法.即先求出长度最短的一条最短路径,再参照它求出长度次短的一条最短路径,依次类推,直到从源点v 到其它各顶点的最短路径全部求出为止. 其代码实现如下所示: package com.algorithm.impl; public class Dijkstra { private static int M =

  • java使用Dijkstra算法实现单源最短路径

    单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径.在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质. 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的中间顶点,那么P(k,s)必定是从k到s的最短路径.下面证明该性质的正确性. 假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,

  • Python实现Dijkstra算法

    Dijkstra算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 迪杰斯特拉算法是求从某一个起点到其余所有结点的最短路径,是一对多的映射关系,是一种贪婪算法 示例: 算法 算法实现流程思路: 迪杰斯特拉算法每次只找离起点最近的一个结点,并将之并入已经访问过结点的集合(以防重复访问,陷入死循环),然后将刚找到的

  • python Dijkstra算法实现最短路径问题的方法

    本文借鉴于张广河教授主编的<数据结构>,对其中的代码进行了完善. 从某源点到其余各顶点的最短路径 Dijkstra算法可用于求解图中某源点到其余各顶点的最短路径.假设G={V,{E}}是含有n个顶点的有向图,以该图中顶点v为源点,使用Dijkstra算法求顶点v到图中其余各顶点的最短路径的基本思想如下: 使用集合S记录已求得最短路径的终点,初始时S={v}. 选择一条长度最小的最短路径,该路径的终点w属于V-S,将w并入S,并将该最短路径的长度记为Dw. 对于V-S中任一顶点是s,将源点到顶点

  • Python使用Dijkstra算法实现求解图中最短路径距离问题详解

    本文实例讲述了Python使用Dijkstra算法实现求解图中最短路径距离问题.分享给大家供大家参考,具体如下: 这里继续前面一篇<Python基于Floyd算法求解最短路径距离问题>的内容,这里要做的是Dijkstra算法,与Floyd算法类似,二者的用途均为求解最短路径距离,在图中有着广泛的应用,二者的原理都是老生常谈了,毕竟本科学习数据结构的同学是不可能不学习这两个算法的,所以在这里我也不再累赘,只简单概述一下这个算法的核心思想: Dijkstra算法的输入有两个参数,一个是原始的数据矩

  • Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个点到其他各顶点的路径--单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, 3:{3:0, 5:5}, 4:{3:4, 4:0, 5:13, 6:15}, 5:{5:0, 6:4}, 6:{6:0}} # 每次找到离源点最近的一个顶

  • JS使用Dijkstra算法求解最短路径

    一.Dijkstra算法的思路 Dijkstra算法是针对单源点求最短路径的算法. 其主要思路如下: 1. 将顶点分为两部分:已经知道当前最短路径的顶点集合Q和无法到达顶点集合R. 2. 定义一个距离数组(distance)记录源点到各顶点的距离,下标表示顶点,元素值为距离.源点(start)到自身的距离为0,源点无法到达的顶点的距离就是一个大数(比如Infinity). 3. 以距离数组中值为非Infinity的顶点V为中转跳点,假设V跳转至顶点W的距离加上顶点V至源点的距离还小于顶点W至源点

随机推荐