pytorch模型预测结果与ndarray互转方式
预测结果转为numpy:
logits=model(feature) #如果模型是跑在GPU上 result=logits.data.cpu().numpy() / logits.cpu().numpy() #如果模型跑在cpu上 result=logits.data.numpy() / logits.numpy()
将矩阵转为tensor:
np_arr = np.array([1,2,3,4]) tensor=torch.from_numpy(np_arr)
以上这篇pytorch模型预测结果与ndarray互转方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
pytorch 加载(.pth)格式的模型实例
有一些非常流行的网络如 resnet.squeezenet.densenet等在pytorch里面都有,包括网络结构和训练好的模型. pytorch自带模型网址:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/ 按官网加载预训练好的模型: import torchvision.models as models # pretrained=True就可以使用预训练的模型 resnet18 = mod
-
Pytorch 保存模型生成图片方式
三通道数组转成彩色图片 img=np.array(img1) img=img.reshape(3,img1.shape[2],img1.shape[3]) img=(img+0.5)*255##img做过归一化处理,[-0.5,0.5] img_path='/home/isee/wei/image/imageset/result.jpg' img=cv2.merge(img) cv2.imwrite(img_path,img) 单通道数组转化成灰度图 Img_mask=np.array(img_
-
pytorch构建网络模型的4种方法
利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种. 假设构建一个网络模型如下: 卷积层-->Relu层-->池化层-->全连接层-->Relu层-->全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import OrderedDict 第一种方法 # Method 1 --------------------------------------
-
Pytorch模型转onnx模型实例
如下所示: import io import torch import torch.onnx from models.C3AEModel import PlainC3AENetCBAM device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def test(): model = PlainC3AENetCBAM() pthfile = r'/home/joy/Projects/
-
Pytorch之保存读取模型实例
pytorch保存数据 pytorch保存数据的格式为.t7文件或者.pth文件,t7文件是沿用torch7中读取模型权重的方式.而pth文件是python中存储文件的常用格式.而在keras中则是使用.h5文件. # 保存模型示例代码 print('===> Saving models...') state = { 'state': model.state_dict(), 'epoch': epoch # 将epoch一并保存 } if not os.path.isdir('checkpoin
-
将Pytorch模型从CPU转换成GPU的实现方法
最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言 大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了. 最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了"高大上"GPU版本. 看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来. 1. 如何进行迁移 由于我使用的是Pytorch写的模型,网上给
-
pytorch模型预测结果与ndarray互转方式
预测结果转为numpy: logits=model(feature) #如果模型是跑在GPU上 result=logits.data.cpu().numpy() / logits.cpu().numpy() #如果模型跑在cpu上 result=logits.data.numpy() / logits.numpy() 将矩阵转为tensor: np_arr = np.array([1,2,3,4]) tensor=torch.from_numpy(np_arr) 以上这篇pytorch模型预测结
-
PyTorch 模型 onnx 文件导出及调用详情
目录 前言 基本用法 高级 API 前言 Open Neural Network Exchange (ONNX,开放神经网络交换) 格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移 PyTorch 所定义的模型为动态图,其前向传播是由类方法定义和实现的 但是 Python 代码的效率是比较底下的,试想把动态图转化为静态图,模型的推理速度应当有所提升 PyTorch 框架中,torch.onnx.export 可以将父类为 nn.Module 的模型导出到 onnx 文件中,
-
pytorch 模型可视化的例子
如下所示: 一. visualize.py from graphviz import Digraph import torch from torch.autograd import Variable def make_dot(var, params=None): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that require gra
-
画pytorch模型图,以及参数计算的方法
刚入pytorch的坑,代码还没看太懂.之前用keras用习惯了,第一次使用pytorch还有些不适应,希望广大老司机多多指教. 首先说说,我们如何可视化模型.在keras中就一句话,keras.summary(),或者plot_model(),就可以把模型展现的淋漓尽致. 但是pytorch中好像没有这样一个api让我们直观的看到模型的样子.但是有网友提供了一段代码,可以把模型画出来,对我来说简直就是如有神助啊. 话不多说,上代码吧. import torch from torch.autog
-
把vgg-face.mat权重迁移到pytorch模型示例
最近使用pytorch时,需要用到一个预训练好的人脸识别模型提取人脸ID特征,想到很多人都在用用vgg-face,但是vgg-face没有pytorch的模型,于是写个vgg-face.mat转到pytorch模型的代码 #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu May 10 10:41:40 2018 @author: hy """ import torc
-
pytorch获取模型某一层参数名及参数值方式
1.Motivation: I wanna modify the value of some param; I wanna check the value of some param. The needed function: 2.state_dict() #generator type model.modules()#generator type named_parameters()#OrderDict type from torch import nn import torch #creat
-
pytorch 实现模型不同层设置不同的学习率方式
在目标检测的模型训练中, 我们通常都会有一个特征提取网络backbone, 例如YOLO使用的darknet SSD使用的VGG-16. 为了达到比较好的训练效果, 往往会加载预训练的backbone模型参数, 然后在此基础上训练检测网络, 并对backbone进行微调, 这时候就需要为backbone设置一个较小的lr. class net(torch.nn.Module): def __init__(self): super(net, self).__init__() # backbone
-
python:目标检测模型预测准确度计算方式(基于IoU)
训练完目标检测模型之后,需要评价其性能,在不同的阈值下的准确度是多少,有没有漏检,在这里基于IoU(Intersection over Union)来计算. 希望能提供一些思路,如果觉得有用欢迎赞我表扬我~ IoU的值可以理解为系统预测出来的框与原来图片中标记的框的重合程度.系统预测出来的框是利用目标检测模型对测试数据集进行识别得到的. 计算方法即检测结果DetectionResult与GroundTruth的交集比上它们的并集,如下图: 蓝色的框是:GroundTruth 黄色的框是:Dete
随机推荐
- React入门教程之Hello World以及环境搭建详解
- utf8和unicode编码究竟是什么关系?有何区别?
- 使用java的HttpClient实现多线程并发
- 根据控件Id得到控件并对该控件进行操作
- JS简单实现滑动加载数据的方法示例
- javascript实现的简单计时器
- 使用PowerShell .Net获取电脑中的UUID
- Banner程序
- 在MySQL中使用LIMIT进行分页的方法
- MySQL按照汉字的拼音排序简单实例
- PHP实现的DES加密解密封装类完整实例
- 用jQuery实现圆点图片轮播效果
- Jquery ajax基础教程
- jQuery中的100个技巧汇总
- JQuery结合CSS操作打印样式的方法
- 详解Lua中的while循环语句的使用
- C#中英文混合字符串截取函数
- 全面解析Java中的引用类型
- C#实现DataSet内数据转化为Excel和Word文件的通用类完整实例
- 关于vector迭代器失效的几种情况总结