深入理解 Go 语言中的 Context

Hi,大家好,我是明哥。

在自己学习 Golang 的这段时间里,我写了详细的学习笔记放在我的个人微信公众号 《Go编程时光》,对于 Go 语言,我也算是个初学者,因此写的东西应该会比较适合刚接触的同学,如果你也是刚学习 Go 语言,不防关注一下,一起学习,一起成长。

我的在线博客:http://golang.iswbm.com
我的 Github:github.com/iswbm/GolangCodingTime

1. 什么是 Context?

在 Go 1.7 版本之前,context 还是非编制的,它存在于 golang.org/x/net/context 包中。

后来,Golang 团队发现 context 还挺好用的,就把 context 收编了,在 Go 1.7 版本正式纳入了标准库。

Context,也叫上下文,它的接口定义如下

type Context interface {
 Deadline() (deadline time.Time, ok bool)
 Done() <-chan struct{}
 Err() error
 Value(key interface{}) interface{}
}

可以看到 Context 接口共有 4 个方法

  • Deadline:返回的第一个值是 截止时间,到了这个时间点,Context 会自动触发 Cancel 动作。返回的第二个值是 一个布尔值,true 表示设置了截止时间,false 表示没有设置截止时间,如果没有设置截止时间,就要手动调用 cancel 函数取消 Context。
  • Done:返回一个只读的通道(只有在被cancel后才会返回),类型为 struct{}。当这个通道可读时,意味着parent context已经发起了取消请求,根据这个信号,开发者就可以做一些清理动作,退出goroutine。
  • Err:返回 context 被 cancel 的原因。
  • Value:返回被绑定到 Context 的值,是一个键值对,所以要通过一个Key才可以获取对应的值,这个值一般是线程安全的。

2. 为何需要 Context?

当一个协程(goroutine)开启后,我们是无法强制关闭它的。

常见的关闭协程的原因有如下几种:

  • goroutine 自己跑完结束退出
  • 主进程crash退出,goroutine 被迫退出
  • 通过通道发送信号,引导协程的关闭。

第一种,属于正常关闭,不在今天讨论范围之内。

第二种,属于异常关闭,应当优化代码。

第三种,才是开发者可以手动控制协程的方法,代码示例如下:

func main() {
 stop := make(chan bool)

 go func() {
 for {
 select {
 case <-stop:
 fmt.Println("监控退出,停止了...")
 return
 default:
 fmt.Println("goroutine监控中...")
 time.Sleep(2 * time.Second)
 }
 }
 }()

 time.Sleep(10 * time.Second)
 fmt.Println("可以了,通知监控停止")
 stop<- true
 //为了检测监控过是否停止,如果没有监控输出,就表示停止了
 time.Sleep(5 * time.Second)

}

例子中我们定义一个stop的chan,通知他结束后台goroutine。实现也非常简单,在后台goroutine中,使用select判断stop是否可以接收到值,如果可以接收到,就表示可以退出停止了;如果没有接收到,就会执行default里的监控逻辑,继续监控,只到收到stop的通知。

以上是一个 goroutine 的场景,如果是多个 goroutine ,每个goroutine 底下又开启了多个 goroutine 的场景呢?在 飞雪无情的博客 里关于为何要使用 Context,他是这么说的

chan+select的方式,是比较优雅的结束一个goroutine的方式,不过这种方式也有局限性,如果有很多goroutine都需要控制结束怎么办呢?如果这些goroutine又衍生了其他更多的goroutine怎么办呢?如果一层层的无穷尽的goroutine呢?这就非常复杂了,即使我们定义很多chan也很难解决这个问题,因为goroutine的关系链就导致了这种场景非常复杂。

在这里我不是很赞同他说的话,因为我觉得就算只使用一个通道也能达到控制(取消)多个 goroutine 的目的。下面就用例子来验证一下。

该例子的原理是:使用 close 关闭通道后,如果该通道是无缓冲的,则它会从原来的阻塞变成非阻塞,也就是可读的,只不过读到的会一直是零值,因此根据这个特性就可以判断 拥有该通道的 goroutine 是否要关闭。

package main

import (
 "fmt"
 "time"
)

func monitor(ch chan bool, number int) {
 for {
 select {
 case v := <-ch:
 // 仅当 ch 通道被 close,或者有数据发过来(无论是true还是false)才会走到这个分支
 fmt.Printf("监控器%v,接收到通道值为:%v,监控结束。\n", number,v)
 return
 default:
 fmt.Printf("监控器%v,正在监控中...\n", number)
 time.Sleep(2 * time.Second)
 }
 }
}

func main() {
 stopSingal := make(chan bool)

 for i :=1 ; i <= 5; i++ {
 go monitor(stopSingal, i)
 }

 time.Sleep( 1 * time.Second)
 // 关闭所有 goroutine
 close(stopSingal)

 // 等待5s,若此时屏幕没有输出 <正在监控中> 就说明所有的goroutine都已经关闭
 time.Sleep( 5 * time.Second)

 fmt.Println("主程序退出!!")

}

输出如下

监控器4,正在监控中...
监控器1,正在监控中...
监控器2,正在监控中...
监控器3,正在监控中...
监控器5,正在监控中...
监控器2,接收到通道值为:false,监控结束。
监控器3,接收到通道值为:false,监控结束。
监控器5,接收到通道值为:false,监控结束。
监控器1,接收到通道值为:false,监控结束。
监控器4,接收到通道值为:false,监控结束。
主程序退出!!

上面的例子,说明当我们定义一个无缓冲通道时,如果要对所有的 goroutine 进行关闭,可以使用 close 关闭通道,然后在所有的 goroutine 里不断检查通道是否关闭(前提你得约定好,该通道你只会进行 close 而不会发送其他数据,否则发送一次数据就会关闭一个goroutine,这样会不符合咱们的预期,所以最好你对这个通道再做一层封装做个限制)来决定是否结束 goroutine。

所以你看到这里,我做为初学者还是没有找到使用 Context 的必然理由,我只能说 Context 是个很好用的东西,使用它方便了我们在处理并发时候的一些问题,但是它并不是不可或缺的。

换句话说,它解决的并不是 能不能 的问题,而是解决 更好用 的问题。

3. 简单使用 Context

如果不使用上面 close 通道的方式,还有没有其他更优雅的方法来实现呢?

有,那就是本文要讲的 Context

我使用 Context 对上面的例子进行了一番改造。

package main

import (
 "context"
 "fmt"
 "time"
)

func monitor(ctx context.Context, number int) {
 for {
 select {
 // 其实可以写成 case <- ctx.Done()
 // 这里仅是为了让你看到 Done 返回的内容
 case v :=<- ctx.Done():
 fmt.Printf("监控器%v,接收到通道值为:%v,监控结束。\n", number,v)
 return
 default:
 fmt.Printf("监控器%v,正在监控中...\n", number)
 time.Sleep(2 * time.Second)
 }
 }
}

func main() {
 ctx, cancel := context.WithCancel(context.Background())

 for i :=1 ; i <= 5; i++ {
 go monitor(ctx, i)
 }

 time.Sleep( 1 * time.Second)
 // 关闭所有 goroutine
 cancel()

 // 等待5s,若此时屏幕没有输出 <正在监控中> 就说明所有的goroutine都已经关闭
 time.Sleep( 5 * time.Second)

 fmt.Println("主程序退出!!")

}

这里面的关键代码,也就三行

第一行:以 context.Background() 为 parent context 定义一个可取消的 context

ctx, cancel := context.WithCancel(context.Background())

第二行:然后你可以在所有的goroutine 里利用 for + select 搭配来不断检查 ctx.Done() 是否可读,可读就说明该 context 已经取消,你可以清理 goroutine 并退出了。

case <- ctx.Done():

第三行:当你想到取消 context 的时候,只要调用一下 cancel 方法即可。这个 cancel 就是我们在创建 ctx 的时候返回的第二个值。

cancel()

运行结果输出如下。可以发现我们实现了和 close 通道一样的效果。

监控器3,正在监控中...
监控器4,正在监控中...
监控器1,正在监控中...
监控器2,正在监控中...
监控器2,接收到通道值为:{},监控结束。
监控器5,接收到通道值为:{},监控结束。
监控器4,接收到通道值为:{},监控结束。
监控器1,接收到通道值为:{},监控结束。
监控器3,接收到通道值为:{},监控结束。
主程序退出!!

4. 根Context 是什么?

创建 Context 必须要指定一个 父 Context,当我们要创建第一个Context时该怎么办呢?

不用担心,Go 已经帮我们实现了2个,我们代码中最开始都是以这两个内置的context作为最顶层的parent context,衍生出更多的子Context。

var (
 background = new(emptyCtx)
 todo = new(emptyCtx)
)

func Background() Context {
 return background
}

func TODO() Context {
 return todo
}

一个是Background,主要用于main函数、初始化以及测试代码中,作为Context这个树结构的最顶层的Context,也就是根Context,它不能被取消。

一个是TODO,如果我们不知道该使用什么Context的时候,可以使用这个,但是实际应用中,暂时还没有使用过这个TODO。

他们两个本质上都是emptyCtx结构体类型,是一个不可取消,没有设置截止时间,没有携带任何值的Context。

type emptyCtx int

func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
 return
}

func (*emptyCtx) Done() <-chan struct{} {
 return nil
}

func (*emptyCtx) Err() error {
 return nil
}

func (*emptyCtx) Value(key interface{}) interface{} {
 return nil
}

5. Context 的继承衍生

上面在定义我们自己的 Context 时,我们使用的是 WithCancel 这个方法。

除它之外,context 包还有其他几个 With 系列的函数

func WithCancel(parent Context) (ctx Context, cancel CancelFunc)
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc)
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)
func WithValue(parent Context, key, val interface{}) Context

这四个函数有一个共同的特点,就是第一个参数,都是接收一个 父context。

通过一次继承,就多实现了一个功能,比如使用 WithCancel 函数传入 根context ,就创建出了一个子 context,该子context 相比 父context,就多了一个 cancel context 的功能。

如果此时,我们再以上面的子context(context01)做为父context,并将它做为第一个参数传入WithDeadline函数,获得的子子context(context02),相比子context(context01)而言,又多出了一个超过 deadline 时间后,自动 cancel context 的功能。

接下来我会举例介绍一下这几种 context,其中 WithCancel 在上面已经讲过了,下面就不再举例了

例子 1:WithDeadline

package main

import (
 "context"
 "fmt"
 "time"
)

func monitor(ctx context.Context, number int) {
 for {
 select {
 case <- ctx.Done():
 fmt.Printf("监控器%v,监控结束。\n", number)
 return
 default:
 fmt.Printf("监控器%v,正在监控中...\n", number)
 time.Sleep(2 * time.Second)
 }
 }
}

func main() {
 ctx01, cancel := context.WithCancel(context.Background())
 ctx02, cancel := context.WithDeadline(ctx01, time.Now().Add(1 * time.Second))

 defer cancel()

 for i :=1 ; i <= 5; i++ {
 go monitor(ctx02, i)
 }

 time.Sleep(5 * time.Second)
 if ctx02.Err() != nil {
 fmt.Println("监控器取消的原因: ", ctx02.Err())
 }

 fmt.Println("主程序退出!!")
}

输出如下

监控器5,正在监控中...
监控器1,正在监控中...
监控器2,正在监控中...
监控器3,正在监控中...
监控器4,正在监控中...
监控器3,监控结束。
监控器4,监控结束。
监控器2,监控结束。
监控器1,监控结束。
监控器5,监控结束。
监控器取消的原因:  context deadline exceeded
主程序退出!!

例子 2:WithTimeout

WithTimeout 和 WithDeadline 使用方法及功能基本一致,都是表示超过一定的时间会自动 cancel context。

唯一不同的地方,我们可以从函数的定义看出

func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc)

func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)

WithDeadline 传入的第二个参数是 time.Time 类型,它是一个绝对的时间,意思是在什么时间点超时取消。

而 WithTimeout 传入的第二个参数是 time.Duration 类型,它是一个相对的时间,意思是多长时间后超时取消。

package main

import (
 "context"
 "fmt"
 "time"
)

func monitor(ctx context.Context, number int) {
 for {
 select {
 case <- ctx.Done():
 fmt.Printf("监控器%v,监控结束。\n", number)
 return
 default:
 fmt.Printf("监控器%v,正在监控中...\n", number)
 time.Sleep(2 * time.Second)
 }
 }
}

func main() {
 ctx01, cancel := context.WithCancel(context.Background())

 // 相比例子1,仅有这一行改动
 ctx02, cancel := context.WithTimeout(ctx01, 1* time.Second)

 defer cancel()

 for i :=1 ; i <= 5; i++ {
 go monitor(ctx02, i)
 }

 time.Sleep(5 * time.Second)
 if ctx02.Err() != nil {
 fmt.Println("监控器取消的原因: ", ctx02.Err())
 }

 fmt.Println("主程序退出!!")
}

输出的结果和上面一样

监控器1,正在监控中...
监控器5,正在监控中...
监控器3,正在监控中...
监控器2,正在监控中...
监控器4,正在监控中...
监控器4,监控结束。
监控器2,监控结束。
监控器5,监控结束。
监控器1,监控结束。
监控器3,监控结束。
监控器取消的原因:  context deadline exceeded
主程序退出!!

例子 3:WithValue

通过Context我们也可以传递一些必须的元数据,这些数据会附加在Context上以供使用。

元数据以 Key-Value 的方式传入,Key 必须有可比性,Value 必须是线程安全的。

还是用上面的例子,以 ctx02 为父 context,再创建一个能携带 value 的ctx03,由于他的父context 是 ctx02,所以 ctx03 也具备超时自动取消的功能。

package main

import (
 "context"
 "fmt"
 "time"
)

func monitor(ctx context.Context, number int) {
 for {
 select {
 case <- ctx.Done():
 fmt.Printf("监控器%v,监控结束。\n", number)
 return
 default:
 // 获取 item 的值
 value := ctx.Value("item")
 fmt.Printf("监控器%v,正在监控 %v \n", number, value)
 time.Sleep(2 * time.Second)
 }
 }
}

func main() {
 ctx01, cancel := context.WithCancel(context.Background())
 ctx02, cancel := context.WithTimeout(ctx01, 1* time.Second)
 ctx03 := context.WithValue(ctx02, "item", "CPU")

 defer cancel()

 for i :=1 ; i <= 5; i++ {
 go monitor(ctx03, i)
 }

 time.Sleep(5 * time.Second)
 if ctx02.Err() != nil {
 fmt.Println("监控器取消的原因: ", ctx02.Err())
 }

 fmt.Println("主程序退出!!")
}

输出如下

监控器4,正在监控 CPU
监控器5,正在监控 CPU
监控器1,正在监控 CPU
监控器3,正在监控 CPU
监控器2,正在监控 CPU
监控器2,监控结束。
监控器5,监控结束。
监控器3,监控结束。
监控器1,监控结束。
监控器4,监控结束。
监控器取消的原因:  context deadline exceeded
主程序退出!!

6. Context 使用注意事项

  • 通常 Context 都是做为函数的第一个参数进行传递(规范性做法),并且变量名建议统一叫 ctx
  • Context 是线程安全的,可以放心地在多个 goroutine 中使用。
  • 当你把 Context 传递给多个 goroutine 使用时,只要执行一次 cancel 操作,所有的 goroutine 就可以收到 取消的信号
  • 不要把原本可以由函数参数来传递的变量,交给 Context 的 Value 来传递。
  • 当一个函数需要接收一个 Context 时,但是此时你还不知道要传递什么 Context 时,可以先用 context.TODO 来代替,而不要选择传递一个 nil。
  • 当一个 Context 被 cancel 时,继承自该 Context 的所有 子 Context 都会被 cancel。

总结

到此这篇关于深入理解 Go 语言中的 Context的文章就介绍到这了,更多相关Go 语言 Context内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python的Django框架中的Context使用

    一旦你创建一个 Template 对象,你可以用 context 来传递数据给它. 一个context是一系列变量和它们值的集合. context在Django里表现为 Context 类,在 django.template 模块里. 她的构造函数带有一个可选的参数: 一个字典映射变量和它们的值. 调用 Template 对象 的 render() 方法并传递context来填充模板: >>> from django.template import Context, Template &

  • 在Django的通用视图中处理Context的方法

    制作友好的模板Context 你也许已经注意到范例中的出版商列表模板在变量 object_list 里保存所有的书籍.这个方法工作的很好,只是对编写模板的人不太友好. 他们必须知道这里正在处理的是书籍. 更好的变量名应该是publisher_list,这样变量所代表的内容就显而易见了. 我们可以很容易地像下面这样修改 template_object_name 参数的名称: from django.conf.urls.defaults import * from django.views.gene

  • 深入Golang之context的用法详解

    context在Golang的1.7版本之前,是在包golang.org/x/net/context中的,但是后来发现其在很多地方都是需要用到的,所有在1.7开始被列入了Golang的标准库.Context包专门用来简化处理单个请求的多个goroutine之间与请求域的数据.取消信号.截止时间等相关操作,那么这篇文章就来看看其用法和实现原理. 源码分析 首先我们来看一下Context里面核心的几个数据结构: Context interface type Context interface { D

  • GOLANG使用Context实现传值、超时和取消的方法

    GO1.7之后,新增了context.Context这个package,实现goroutine的管理. Context基本的用法参考GOLANG使用Context管理关联goroutine. 实际上,Context还有个非常重要的作用,就是设置超时.比如,如果我们有个API是这样设计的: type Packet interface { encoding.BinaryMarshaler encoding.BinaryUnmarshaler } type Stack struct { } func

  • 详解Django框架中用context来解析模板的方法

    你需要一段context来解析模板. 一般情况下,这是一个 django.template.Context 的实例,不过在Django中还可以用一个特殊的子类, django.template.RequestContext ,这个用起来稍微有些不同. RequestContext 默认地在模板context中加入了一些变量,如 HttpRequest 对象或当前登录用户的相关信息. 当你不想在一系例模板中都明确指定一些相同的变量时,你应该使用 RequestContext . 例如,考虑这两个视

  • 深入理解 Go 语言中的 Context

    Hi,大家好,我是明哥. 在自己学习 Golang 的这段时间里,我写了详细的学习笔记放在我的个人微信公众号 <Go编程时光>,对于 Go 语言,我也算是个初学者,因此写的东西应该会比较适合刚接触的同学,如果你也是刚学习 Go 语言,不防关注一下,一起学习,一起成长. 我的在线博客:http://golang.iswbm.com 我的 Github:github.com/iswbm/GolangCodingTime 1. 什么是 Context? 在 Go 1.7 版本之前,context 还

  • 带你理解C语言中的汉诺塔公式

    目录 汉诺塔公式 汉诺塔问题在数学层面的公式: C语言递归公式 两层汉诺塔 三层汉诺塔 总结 汉诺塔公式 汉诺塔问题在数学层面的公式: 不用说,你看到这个公式一定一脸懵逼,我现在来讲解这个公式的作用. 先来回想一下大象放冰箱要几步,三步吧,打开冰箱,放进去,关上门就行了,我们先不要去思考一些细碎的步骤,将一个复杂的问题先简单化,再慢慢去分析. 那汉诺塔问题也是同样的简单三步:(假设有n个盘子) 一.把最大的盘子留在A柱,然后将其他的盘子全放在B柱. 二.把最大的盘子放到C柱. 三.然后将B柱上的

  • 深入理解Go语言中的闭包

    闭包 在函数编程中经常用到闭包,闭包是什?它是怎么产生的及用来解决什么问题呢?先给出闭包的字面定义:闭包是由函数及其相关引用环境组合而成的实体(即:闭包=函数+引用环境).这个从字面上很难理解,特别对于一直使用命令式语言进行编程的程序员们. Go语言中的闭包 先看一个demo: func f(i int) func() int { return func() int { i++ return i } } 函数f返回了一个函数,返回的这个函数就是一个闭包.这个函数中本身是没有定义变量i的,而是引用

  • 深度理解C语言中的关键字static

    目录 一.函数和变量的多文件问题 1.1.为什么全局变量和函数需要跨文件访问 二.static修饰变量和函数 2.1.static修饰全局变量 2.2.static修饰局部变量 2.3.为什么局部变量具有临时性,全局变量具有全局性 总结 一.函数和变量的多文件问题 .h: 头文件,一般包含函数声明,变量声明,宏定义,头文件等内容(header) .c : 源文件,一般包含函数实现,变量定义等 (.c:c语言) 如果在一个源文件定义一个函数,然后再另一个源文件调用,这样的方式可行吗? 答案是可行的

  • 深入理解C语言中使用频率较高的指针与数组

    目录 定义 指针与二维数组 指针数组与数组指针 数组指针的应用 操作 总结 定义 指针:C语言中某种数据类型的数据存储的内存地址,例如:指向各种整型的指针或者指向某个结构体的指针. 数组:若干个相同C语言数据类型的元素在连续内存中储存的一种形态. 数组在编译时就已经被确定下来,而指针直到运行时才能被真正的确定到底指向何方.所以数组的这些身份(内存)一旦确定下来就不能轻易的改变了,它们(内存)会伴随数组一生. 而指针则有很多的选择,在其一生他可以选择不同的生活方式,比如一个字符指针可以指向单个字符

  • 深入理解Swift语言中的闭包机制

    在 Swift 中的闭包类似于结构块,并可以在任何地方调用,它就像 C 和 Objective C 语言内置的函数. 函数内部定义的常数和变量引用可被捕获并存储在闭包.函数被视为封闭的特殊情况,它有 3 种形式. 在 Swift 语言闭合表达式,如下优化,重量轻语法风格,其中包括: 推导参数并从上下文菜单返回值的类型 从单封表达的隐性返回 简略参数名称 尾部闭包语法 语法 下面是一个通用的语法定义用于闭包,它接受参数并返回数据的类型: 复制代码 代码如下: {(parameters) -> re

  • 通过一个小例子来简单理解C语言中的内存空间管理

    对于一个C语言程序而言,内存空间主要由五个部分组成代码段(.text).数据段(.data).BSS段(.bss),堆和栈组成,其中代码段,数据段和BSS段是编译的时候由编译器分配的,而堆和 栈是程序运行的时候由系统分配的.布局如下 在上图中,由编译器分配的地址空间都是在连接的时候分配的,而运行时分配的空间是在程序运行时由系统分配的 BSS段:BSS段(bss segment)通常是指用来存放程序中未初始化的全局变量和静态变量 (这里注意一个问题:一般的书上都会说全局变量和静态变量是会自动初始化

  • 直观理解C语言中指向一位数组与二维数组的指针

    一维数组和指针: 对于一位数组和指针是很好理解的: 一维数组名: 对于这样的一维数组:int a[5];  a作为数组名就是我们数组的首地址, a是一个地址常量 . 首先说说常量和变量的关系, 对于变量来说, 用箱子去比喻再好不过了, 声明一个变量就声明一个箱子,比如我们开辟出一个苹果类型的箱子, 给这个变量赋值就是把盛放苹果的箱子中放入一个实实在在的苹果, 这就是变量的赋值.  而对于数组来说, 就是一组类型相同的箱子中,一组苹果箱子, 可以放入不同的苹果. 一维数组空间: 变量被声明后, 我

  • 深入理解C语言中编译相关的常见错误

    1. /usr/lib/gcc/i686-linux-gnu/4.6/../../../i386-linux-gnu/crt1.o: In function `_start':(.text+0x18): undefined reference to `main'collect2: ld 返回 1Reason: no main function in source file2. to get compile options -I and -lpkg-config libe.g: pkg-confi

  • 深入理解Go语言中的数组和切片

    一.类型 数组是值类型,将一个数组赋值给另一个数组时,传递的是一份拷贝. 切片是引用类型,切片包装的数组称为该切片的底层数组. 我们来看一段代码 //a是一个数组,注意数组是一个固定长度的,初始化时候必须要指定长度,不指定长度的话就是切片了 a := [3]int{1, 2, 3} //b是数组,是a的一份拷贝 b := a //c是切片,是引用类型,底层数组是a c := a[:] for i := 0; i < len(a); i++ { a[i] = a[i] + 1 } //改变a的值后

随机推荐