利用pandas向一个csv文件追加写入数据的实现示例

我们越来越多的使用pandas进行数据处理,有时需要向一个已经存在的csv文件写入数据,传统的方法之前我也有些过,向txt,excel文件写入数据,传送门:Python将二维列表(list)的数据输出(TXT,Excel)

pandas to_csv()只能在新文件写数据?当然不是!

pandas to_csv() 是可以向已经存在的具有相同结构的csv文件增加dataframe数据。

df.to_csv('my_csv.csv', mode='a', header=False)

to_csv()方法mode默认为w,我们加上mode='a',便可以追加写入数据。

pandas读写文件,处理数据的效率太高了,所以我们尽量使用pandas的进行输出。

下面让我们来看一下示例

# -*- coding:utf-8 -*-
import os
import time
import pandas as pd

from multiprocessing import Pool

def merge(filename):
  return pd.read_csv('./fun_data/'+filename)

if __name__ == "__main__":
  file_list = os.listdir('./fun_data')
  e1 = time.time()

  pool = Pool(20)
  result = pool.map(merge,file_list)
  pool.close()
  pool.join()

  e2 = time.time()
  print(e2 - e1)

  for i in result:
    i.to_csv('./static.csv',mode='a',encoding='utf-8',header=False,index=False)
  e3 = time.time()
  print(e3-e2)

到此这篇关于利用pandas向一个csv文件追加写入数据的实现示例的文章就介绍到这了,更多相关pandas csv追加写入内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pandas将numpy数组写入到csv的实例

    直接代码 data_arr = [] data = iter_files(dir,speakers) for k,v in data.items(): data_arr.append([k,v]) # print(data_arr) import numpy as np np_data = np.array(data_arr) ##写入文件 pd_data = pd.DataFrame(np_data,columns=['filename','gender']) print(pd_data) p

  • 利用pandas向一个csv文件追加写入数据的实现示例

    我们越来越多的使用pandas进行数据处理,有时需要向一个已经存在的csv文件写入数据,传统的方法之前我也有些过,向txt,excel文件写入数据,传送门:Python将二维列表(list)的数据输出(TXT,Excel) pandas to_csv()只能在新文件写数据?当然不是! pandas to_csv() 是可以向已经存在的具有相同结构的csv文件增加dataframe数据. df.to_csv('my_csv.csv', mode='a', header=False) to_csv(

  • python对csv文件追加写入列的方法

    python对csv文件追加写入列,具体内容如下所示: 原始数据 [外链图片转存失败(img-zQSQWAyQ-1563597916666)(C:\Users\innduce\AppData\Roaming\Typora\typora-user-images\1557663419920.png)] import pandas as pd import numpy as np data = pd.read_csv(r'平均值.csv') print(data.columns)#获取列索引值 dat

  • 如何使用pandas对超大csv文件进行快速拆分详解

    目录 前言 1. 操作步骤 1.1 安装pandas 1.2 拆分大文件 2. 再多了解一点儿 2.1 pandas读取csv文件后,返回的是什么类型? 2.2 如何从DataFrame中读取某一行呢? 2.3 如何从DataFrame读取多行呢? 2.4 如何从DataFrame中读取某一列呢? 2.5 如何用pandas读写CSV文件? 2.6 关于pandas 3. 小结 前言 本文介绍如何利用pandas对超大CSV文件进行快速拆分. 1. 操作步骤 1.1 安装pandas pip i

  • Python将一个CSV文件里的数据追加到另一个CSV文件的方法

    在做数据处理工作时,有时需要将数据合并在一起,本文主要使用Python将两个CSV文件内数据合并在一起,合并方式有很多,本文只追加方式. 首先给定两个CSV文件的内容 1.CSV 2.CSV 将2.CSV文件里的数据追加到1.CSV后面 直接敲写Python代码 with open('1.csv','ab') as f: f.write(open('2.csv','rb').read())#将2.csv内容追加到1.csv的后面 查看1.CSV内的数据变化情况 非常简单快捷的一次Python操作

  • 使用python的pandas库读取csv文件保存至mysql数据库

    第一:pandas.read_csv读取本地csv文件为数据框形式 data=pd.read_csv('G:\data_operation\python_book\chapter5\\sales.csv') 第二:如果存在日期格式数据,利用pandas.to_datatime()改变类型 data.iloc[:,1]=pd.to_datetime(data.iloc[:,1]) 注意:=号,这样在原始的数据框中,改变了列的类型 第三:查看列类型 print(data.dtypes) 第四:方法一

  • 使用pandas生成/读取csv文件的方法实例

    前言 csv是我接触的比较早的一种文件,比较好的是这种文件既能够以电子表格的形式查看又能够以文本的形式查看. 先引入pandas库 import pandas as pd 方法一: 1.我构造了一个cont_list,结构为列表嵌套字典,字典是每一个样本,类似于我们爬虫爬下来的数据的结构 2.利用pd.DataFrame方法先将数据转换成一个二维结构数据,如下方打印的内容所示,cloumns指定列表,列表必须是列表 3.to_csv方法可以直接保存csv文件,index=False表示csv文件

  • PHP创建文件及写入数据(覆盖写入,追加写入)的方法详解

    本文实例讲述了PHP创建文件及写入数据(覆盖写入,追加写入)的方法.分享给大家供大家参考,具体如下: 这里主要介绍了PHP创建文件,并向文件中写入数据,覆盖,追加的实现代码,需要的朋友可以参考下: 创建文件我们用到函数 fopen ( string filename, string mode ) 参数: filename:创建文件名 mode:以什么方式打开文件filename 其中mode可能值列表: mode 说明 'r' 只读方式打开,将文件指针指向文件头. 'r+' 读写方式打开,将文件

  • Python利用Rows快速操作csv文件

    目录 1.准备 2.基本使用 3.命令行工具 Rows 是一个专门用于操作表格的第三方Python模块. 只要通过 Rows 读取 csv 文件,她就能生成可以被计算的 Python 对象. 相比于 pandas 的 pd.read_csv, 我认为 Rows 的优势在于其易于理解的计算语法和各种方便的导出和转换语法.它能非常方便地提取pdf中的文字.将csv转换为sqlite文件.合并csv等,还能对csv文件执行sql语法,还是比较强大的. 当然,它的影响力肯定没有 Pandas 大,不过了

  • 使用pandas read_table读取csv文件的方法

    read_csv是pandas中专门用于csv文件读取的功能,不过这并不是唯一的处理方式.pandas中还有读取表格的通用函数read_table. 接下来使用read_table功能作一下csv文件的读取尝试,使用此功能的时候需要指定文件中的内容分隔符. 查看csv文件的内容如下: In [10]: cat data.csv index,name,comment,,,, 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,come

  • 使用pandas模块读取csv文件和excel表格,并用matplotlib画图的方法

    如下所示: # coding=utf-8 import pandas as pd # 读取csv文件 3列取名为 name,sex,births,后面参数格式为names= names1880 = pd.read_csv("names_1880.txt", names=['name', 'sex', 'births']) print names1880 print names1880.groupby('sex').births.sum() 输出如下 最后一行是说按sex分组并计算bir

随机推荐