Python pyecharts绘制条形图详解

目录
  • 一、简介
  • 二、整理数据
    • 1、配置主题
    • 2、柱状图 Bar - Bar_base_dict_config
    • 3、样例数据 Faker.choose()
    • 4、滚动条 Bar - Bar_datazoom_slider
    • 5、鼠标移动效果 Bar - Bar_datazoom_inside
    • 6、显示最值 Bar - Bar_markpoint_type
    • 7、改变滚动条在侧面 Bar - Bar_datazoom_slider_vertical
    • 8、多个Y轴
    • 9、直方图 Bar - Bar_histogram

一、简介

关于具体详情,请咨询:pyecharts官网

pyecharts是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts诞生了。Echarts是用JS来写的,而我们使用pyecharts则可以使用Python来调用里面的API。

优点:

简洁的 API 设计,使用如丝滑般流畅,支持链式调用

囊括了 30+ 种常见图表,应有尽有

支持主流 Notebook环境,Jupyter Notebook 和 JupyterLab

可轻松集成至 Flask,Django 等主流 Web 框架

高度灵活的配置项,可轻松搭配出精美的图表

详细的文档和示例,帮助开发者更快的上手项目

多达 400+地图文件以及原生的百度地图,为地理数据可视化提供强有力的支持。

二、整理数据

安装:

pip install pyecharts

1、配置主题

Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)) # 第一种
Bar({"theme": ThemeType.MACARONS}) # 第二种

2、柱状图 Bar - Bar_base_dict_config

import os
from matplotlib import pyplot as plt
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType
list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()

c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(list1)
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        )
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title='中国电影票房',subtitle='按地区比较票价与人次')
    )
)
# c.render("cnbo1.html") # 生成html图片
# os.system("cnbo01.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片

3、样例数据 Faker.choose()

使用这段代码会随机调用系统的样例参数:

.add_xaxis(Faker.choose())

from pyecharts.faker import Faker

list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()

c = (
    Bar({"theme": ThemeType.MACARONS})  ### 配置好看的图表主题!!!
    .add_xaxis(Faker.choose())    ### 这句话表示使用随机的后台样例数据
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        )
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts={"text":"样例数据","subtext":"使用Faker.choose()"}
    )
)
c.render("cnbo1.html") # 生成html图片
# os.system("cnbo1.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片

4、滚动条 Bar - Bar_datazoom_slider

datazoom_opts=opts.DataZoomOpts()

表示可以滑动的滚动条:

list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()

c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(list1)
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        )
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title='中国电影票房',subtitle='按地区比较票价与人次'),
         brush_opts=opts.BrushOpts() ,### 使用这个可以使图片的右上角多出来一些工具
        datazoom_opts=opts.DataZoomOpts(), ### 可以使最下面多出滚动条
    )
)
c.render("cnbo2.html") # 生成html图片
# os.system("cnbo01.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片

5、鼠标移动效果 Bar - Bar_datazoom_inside

根据鼠标来放大与缩小的效果:

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar()
    .add_xaxis(Faker.days_attrs)
    .add_yaxis("商家A", Faker.days_values, color=Faker.rand_color())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Bar-DataZoom(inside)"),
        datazoom_opts=opts.DataZoomOpts(type_="inside"),
    )
    .render("bar_datazoom_inside.html")
)

6、显示最值 Bar - Bar_markpoint_type

list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()

c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.HALLOWEEN))
    .add_xaxis(list1)
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        ),
        markpoint_opts=opts.MarkPointOpts( #########
            data=[
            opts.MarkPointItem(type_="max", name="最大值"),
            opts.MarkPointItem(type_="min", name="最小值"),
            opts.MarkPointItem(type_="average", name="平均值"),
        ]
           ),#########
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title='中国电影票房',subtitle='按地区比较票价与人次'),
         brush_opts=opts.BrushOpts() ,### 使用这个可以使图片的右上角多出来一些工具
        datazoom_opts=opts.DataZoomOpts(orient='vertical'),
    )
)
c.render("cnbo2.html") # 生成html图片
# os.system("cnbo01.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片

7、改变滚动条在侧面 Bar - Bar_datazoom_slider_vertical

list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()

c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
    .add_xaxis(list1)
    .add_yaxis("票价", list2, stack="stack1", category_gap="50%")
    .add_yaxis("人次", list3,   stack="stack1",category_gap="50%")
    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="right",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        )
    )
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
        title_opts=opts.TitleOpts(title='中国电影票房',subtitle='按地区比较票价与人次'),
         brush_opts=opts.BrushOpts() ,### 使用这个可以使图片的右上角多出来一些工具
        datazoom_opts=opts.DataZoomOpts(orient='vertical'),
    )
)
c.render("cnbo2.html") # 生成html图片
# os.system("cnbo01.html")  # 执行完代码直接跳出来图片
c.render_notebook() # 直接在代码区域展示图片

8、多个Y轴

colors=['#5793f3','#d14a61','#675bba']
legend_list=['票房','人次','价格','评价']
list1=cnbodfsort['REGION'].tolist()
list2=cnbodfsort['PRICE'].tolist()
list3=cnbodfsort['PERSONS'].tolist()
list4=cnbodfsort['BO'].tolist()
list5=cnbodfsort['points'].tolist()
c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK,width="1600px",height="600px"))
    .add_xaxis(list1)
    .add_yaxis("评分", list5,yaxis_index=0,category_gap="50%",color=colors[2])
    .add_yaxis("票价", list2,yaxis_index=0,category_gap="50%",color=colors[0])
    .add_yaxis("人次", list3,yaxis_index=0,category_gap="50%",color=colors[1])

    .set_series_opts(
        label_opts=opts.LabelOpts(
            position="top",
            formatter=JsCode(
                "function(x){return Number(x.data).toFixed(2);}"
            ),
        ),
        markpoint_opts=opts.MarkPointOpts(
            data=[
            opts.MarkPointItem(type_="max", name="最大值"),
            opts.MarkPointItem(type_="min", name="最小值"),
            opts.MarkPointItem(type_="average", name="平均值"),
               ]
           ),
    )
    .extend_axis(
    yaxis=opts.AxisOpts(
        name="票房",
        type_="value",
        min_=1000,
        max_=150000,
        interval=10000,
        position="right",
        axislabel_opts=opts.LabelOpts(formatter="{value} 万")
    )
    )

    .extend_axis(
    yaxis=opts.AxisOpts(
        name="评价",
        type_="value",
        min_=0,
        max_=11,
        interval=1,
        position="left",
        axislabel_opts=opts.LabelOpts(formatter="{value} 点"),
        axisline_opts=opts.AxisLineOpts(
            linestyle_opts=opts.LineStyleOpts(color=colors[2])
        ),
        splitline_opts=opts.SplitLineOpts(
            is_show=True,linestyle_opts=opts.LineStyleOpts(opacity=1)
        ),
        )
    )

        .set_global_opts(
            yaxis_opts=opts.AxisOpts(
                type_="value",
                name="票价",
                min_=10,
                max_=70,
                position="right",
                offset=80,
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color=colors[0])
            ),
            axislabel_opts=opts.LabelOpts(formatter="{value} 元"),
        ),

        tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        datazoom_opts=opts.DataZoomOpts(orient='vertical'),
        toolbox_opts=opts.ToolboxOpts(pos_left='120%'),
        legend_opts=opts.LegendOpts(is_show=False),
    )
 )
line = (
    Line()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="票房",
        yaxis_index=1,
        y_axis=list4,
        label_opts=opts.LabelOpts(is_show=False),
    )
)
c.render_notebook() # 直接在代码区域展示图片

双Y轴:

9、直方图 Bar - Bar_histogram

# Bar - Bar_histogram
from pyecharts.options.global_options import ThemeType
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c = (
    Bar({"theme":ThemeType.DARK})
    .add_xaxis(cnboregiongb.index.tolist())
    .add_yaxis("数量", cnboregiongb.values.tolist(), category_gap=0, color=Faker.rand_color())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-直方图"))
)
c.render_notebook()

以上就是Python pyecharts绘制条形图详解的详细内容,更多关于Python pyecharts条形图的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python pyecharts绘制柱状图

    目录 一.pyecharts绘制柱状图语法简介 二.绘制普通柱状图 三.绘制堆叠柱状图 四.绘制横向柱状图 五.pyecharts柱状图datazoom案例 六.对应pyecharts柱状图datazoom案例的代码我用page放一起了 一.pyecharts绘制柱状图语法简介 柱状/条形图,通过柱形的高度/条形的宽度来表现数据的大小. Bar.add() 方法签名: add(name, x_axis, y_axis, is_stack=False, bar_category_gap='20%'

  • python 画条形图(柱状图)实例

    条形图(bar chart),也称为柱状图,是一种以长方形的长度为变量的统计图表,长方形的长度与它所对应的变量数值呈一定比例. 1. 竖放条形图 画条形图要用到 pyplot 中的 bar 函数,该函数的基本语法为: bar(x, height, [width], **kwargs) x 数组,每个条形的横坐标 height 个数或一个数组,条形的高度 [width] 可选参数,一个数或一个数组,条形的宽度,默认为 0.8 **kwargs 不定长的关键字参数,用字典形式设置条形图的其他属性 *

  • Python Pyecharts绘制箱线图详解

    本篇博客只是单纯的记录一下自己学习Boxplot,没有过多的解释,官网:>>Boxplot import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 用来正常显示中文标签 p

  • Python Pyecharts绘制象形柱图

    目录 1.准备工作 1.1 导入模块 1.2 部分参数 2.基础象形图 3.自定义图例 3.1 图片图例 3.2 生成象形图 在可视化展示过程中,为了达到更形象的展示效果,我们往往需要自定义一些直观的图例,本期给大家介绍可视化库Pyecharts中的象形柱图,希望对你有所帮助. 1.准备工作 1.1 导入模块 from pyecharts import options as opts from pyecharts.charts import PictorialBar from pyecharts

  • python绘制堆叠条形图介绍

    目前在网络上多是单个条形图堆叠,没看到一组的条形图堆叠. 代码如下: import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as ticker 导入一组自己造的数据 data = pd.read_excel('data.xlsx') In [4]: data Out[4]: 多使用几个plt.bar()函数,就可以画出来啦... tick_label = li

  • 利用Python pyecharts绘制饼图

    目录 一.pyecharts绘制饼图语法简介 二.绘制普通饼图 三.绘制圆环图 四.绘制饼图-玫瑰图 一.pyecharts绘制饼图语法简介 饼图主要用于表现不同类目的数据在总和中的占比.每个的弧度不是数据量的占比 pie.add()方法的用法 add(name, attr, value, radius=None, center=None, rosetype=None, **kwargs) name->str 图例名称 attr->list 属性名称 value->list 属性所对应的

  • Python pyecharts绘制条形图详解

    目录 一.简介 二.整理数据 1.配置主题 2.柱状图 Bar - Bar_base_dict_config 3.样例数据 Faker.choose() 4.滚动条 Bar - Bar_datazoom_slider 5.鼠标移动效果 Bar - Bar_datazoom_inside 6.显示最值 Bar - Bar_markpoint_type 7.改变滚动条在侧面 Bar - Bar_datazoom_slider_vertical 8.多个Y轴 9.直方图 Bar - Bar_histo

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 其实在数据统计图表中,有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势. 本期,我们将详细

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 往期内容速看 Python用 matplotlib 绘制柱状图 Python matplotlib底层

  • Python pyecharts绘制折线图详解

    一.绘制折线图 import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['font.sans-serif']=['Microsoft YaHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False

  • Python+pyecharts绘制双动态曲线教程详解

    总体跟官方样例相似,但是官方样例因为部分代码有误无法运行,同时需要了解json,以及前后端知识需要一些时间,因此供大家参考. 这个是views def line_base() -> Line: line = ( Line() .add_xaxis(list(range(10))) .add_yaxis(series_name="专注度", y_axis=[randrange(0, 100) for _ in range(10)],areastyle_opts=opts.AreaS

  • Python利用Matplotlib绘制图表详解

    目录 前言 折线图绘制与显示 绘制数学函数图像 散点图绘制 绘制柱状图 绘制直方图 饼图 前言 Matplotlib 是 Python 中类似 MATLAB 的绘图工具,如果您熟悉 MATLAB,那么可以很快的熟悉它. Matplotlib 提供了一套面向对象绘图的 API,它可以轻松地配合 Python GUI 工具包(比如 PyQt,WxPython.Tkinter)在应用程序中嵌入图形.与此同时,它也支持以脚本的形式在 Python.IPython Shell.Jupyter Notebo

  • Python matplotlib plotly绘制图表详解

    目录 一.整理数据 二.折线图 三.散点图 四.饼图 五.柱形图 六.点图(设置多个go对象) 七.2D密度图 八.简单3D图 一.整理数据 以300部电影作为数据源 import pandas as pd cnboo=pd.read_excel("cnboNPPD1.xls") cnboo import seaborn as sns import numpy as np import matplotlib as mpl from matplotlib import pyplot as

  • Python利用plotly绘制正二十面体详解

    目录 顶点 棱 实现正二十面体 plotly 的 Python 软件包是一个开源的代码库,它基于 plot.js,而后者基于 d3.js.我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,能让你更方便地使用 plotly 和 Pandas 数据表协同工作. 一言以蔽之,plotly是一款擅长交互的Python绘图库,下面就初步使用一下这个库的三维绘图功能.此前曾经用matplotlib画了正二十面体和足球:Python绘制正二十面体:画足球,这次用plotly复现一

  • Python 可视化神器Plotly详解

    文 | 潮汐 来源:Python 技术「ID: pythonall」 学习Python是做数分析的最基础的一步,数据分析离不开数据可视化.Python第三方库中我们最常用的可视化库是 pandas,matplotlib,pyecharts, 当然还有 Tableau,另外最近在学习过程中发现另一款可视化神器-Plotly,它是一款用来做数据分析和可视化的在线平台,功能非常强大, 可以在线绘制很多图形比如条形图.散点图.饼图.直方图等等.除此之外,它还支持在线编辑,以及多种语言 python.ja

  • Python内置模块turtle绘图详解

    urtle库是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x.纵轴为y的坐标系原点,(0,0)位置开始,它根据一组函数指令的控制,在这个平面坐标系中移动,从而在它爬行的路径上绘制了图形. turtle绘图的基础知识: 1.画布(canvas) 画布就是turtle为我们展开用于绘图区域,我们可以设置它的大小和初始位置. 设置画布大小 turtle.screensize(canvwidth=None,canvheight=None,bg=None),参数分别为画布的

随机推荐