Python实现迪杰斯特拉算法并生成最短路径的示例代码

def Dijkstra(network,s,d):#迪杰斯特拉算法算s-d的最短路径,并返回该路径和代价
  print("Start Dijstra Path……")
  path=[]#s-d的最短路径
  n=len(network)#邻接矩阵维度,即节点个数
  fmax=999
  w=[[0 for i in range(n)]for j in range(n)]#邻接矩阵转化成维度矩阵,即0→max
  book=[0 for i in range(n)]#是否已经是最小的标记列表
  dis=[fmax for i in range(n)]#s到其他节点的最小距离
  book[s-1]=1#节点编号从1开始,列表序号从0开始
  midpath=[-1 for i in range(n)]#上一跳列表
  for i in range(n):
    for j in range(n):
      if network[i][j]!=0:
        w[i][j]=network[i][j]#0→max
      else:
        w[i][j]=fmax
      if i==s-1 and network[i][j]!=0:#直连的节点最小距离就是network[i][j]
        dis[j]=network[i][j]
  for i in range(n-1):#n-1次遍历,除了s节点
    min=fmax
    for j in range(n):
      if book[j]==0 and dis[j]<min:#如果未遍历且距离最小
        min=dis[j]
        u=j
    book[u]=1
    for v in range(n):#u直连的节点遍历一遍
      if dis[v]>dis[u]+w[u][v]:
        dis[v]=dis[u]+w[u][v]
        midpath[v]=u+1#上一跳更新
  j=d-1#j是序号
  path.append(d)#因为存储的是上一跳,所以先加入目的节点d,最后倒置
  while(midpath[j]!=-1):
    path.append(midpath[j])
    j=midpath[j]-1
  path.append(s)
  path.reverse()#倒置列表
  print(path)
  #print(midpath)
  print(dis)
  #return path

network=[[0,1,0,2,0,0],
     [1,0,2,4,3,0],
     [0,2,0,0,1,4],
     [2,4,0,0,6,0],
     [0,3,1,6,0,2],
     [0,0,4,0,2,0]]
Dijkstra(network,1,6)

以上就是Python实现迪杰斯特拉算法并生成最短路径的示例代码的详细内容,更多关于Python实现迪杰斯特拉算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • python动态规划算法实例详解

    如果大家对这个生僻的术语不理解的话,那就先听小编给大家说个现实生活中的实际案例吧,虽然现在手机是相当的便捷,还可以付款,但是最初的时候,我们经常会使用硬币,其中,我们如果遇到手中有很多五毛或者1块钱硬币,要怎么凑出来5元钱呢?这么一个过程也可以称之为动态规划算法,下面就来看下详细内容吧. 从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2 ( n = 1,2 fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数列的第 n 项 代码如下: #

  • python 机器学习之实现朴素贝叶斯算法的示例

    特点 这是分类算法贝叶斯算法的较为简单的一种,整个贝叶斯分类算法的核心就是在求解贝叶斯方程P(y|x)=[P(x|y)P(y)]/P(x) 而朴素贝叶斯算法就是在牺牲一定准确率的情况下强制特征x满足独立条件,求解P(x|y)就更为方便了 但基本上现实生活中,没有任何关系的两个特征几乎是不存在的,故朴素贝叶斯不适合那些关系密切的特征 from collections import defaultdict import numpy as np from sklearn.datasets import

  • python实现sm2和sm4国密(国家商用密码)算法的示例

    GMSSL模块介绍 GmSSL是一个开源的加密包的python实现,支持SM2/SM3/SM4等国密(国家商用密码)算法.项目采用对商业应用友好的类BSD开源许可证,开源且可以用于闭源的商业应用. 安装模块 pip install gmssl https://github.com/duanhongyi/gmssl/blob/master/README.md官方文档 SM2算法 RSA算法的危机在于其存在亚指数算法,对ECC算法而言一般没有亚指数攻击算法 SM2椭圆曲线公钥密码算法:我国自主知识产

  • Python实现迪杰斯特拉算法过程解析

    一. 迪杰斯特拉算法思想 Dijkstra算法主要针对的是有向图的单元最短路径问题,且不能出现权值为负的情况!Dijkstra算法类似于贪心算法,其应用根本在于最短路径的最优子结构性质. 最短路径的最优子结构性质: 如果P(i,j)={Vi-Vk-Vs-Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径. 证明: 假设P(i,j)={Vi-Vk-Vs-Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)

  • 详解python算法常用技巧与内置库

    近些年随着python的越来越火,python也渐渐成为了很多程序员的喜爱.许多程序员已经开始使用python作为第一语言来刷题. 最近我在用python刷题的时候想去找点python的刷题常用库api和刷题技巧来看看.类似于C++的STL库文档一样,但是很可惜并没有找到,于是决定结合自己的刷题经验和上网搜索做一份文档出来,供自己和大家观看查阅. 1.输入输出: 1.1 第一行给定两个值n,m,用空格分割,第一个n决定接下来有n行的输入,m决定每一行有多少个数字,m个数字均用空格分隔. 解决办法

  • python 实现关联规则算法Apriori的示例

    首先导入包含apriori算法的mlxtend库, pip install mlxtend 调用apriori进行关联规则分析,具体代码如下,其中数据集选取本博客 "机器学习算法--关联规则" 中的例子,可进行参考,设置最小支持度(min_support)为0.4,最小置信度(min_threshold)为0.1, 最小提升度(lift)为1.0,对数据集进行关联规则分析, from mlxtend.preprocessing import TransactionEncoder fro

  • python实现暗通道去雾算法的示例

    何凯明博士的去雾文章和算法实现已经漫天飞了,我今天也就不啰里啰唆,直接给出自己python实现的完整版本,全部才60多行代码,简单易懂,并有简要注释,去雾效果也很不错. 在这个python版本中,计算量最大的就是最小值滤波,纯python写的,慢,可以进一步使用C优化,其他部分都是使用numpy和opencv的现成东东,效率还行. import cv2 import numpy as np def zmMinFilterGray(src, r=7): '''最小值滤波,r是滤波器半径''' ''

  • python里反向传播算法详解

    反向传播的目的是计算成本函数C对网络中任意w或b的偏导数.一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差.这是流行的梯度下降算法.而偏导数给出了最大上升的方向.因此,关于反向传播算法,我们继续查看下文. 我们向相反的方向迈出了一小步--最大下降的方向,也就是将我们带到成本函数的局部最小值的方向. 图示演示: 反向传播算法中Sigmoid函数代码演示: # 实现 sigmoid 函数 return 1 / (1 + np.exp(-x))

  • 详解python 支持向量机(SVM)算法

    相比于逻辑回归,在很多情况下,SVM算法能够对数据计算从而产生更好的精度.而传统的SVM只能适用于二分类操作,不过却可以通过核技巧(核函数),使得SVM可以应用于多分类的任务中. 本篇文章只是介绍SVM的原理以及核技巧究竟是怎么一回事,最后会介绍sklearn svm各个参数作用和一个demo实战的内容,尽量通俗易懂.至于公式推导方面,网上关于这方面的文章太多了,这里就不多进行展开了~ 1.SVM简介 支持向量机,能在N维平面中,找到最明显得对数据进行分类的一个超平面!看下面这幅图: 如上图中,

  • python归并排序算法过程实例讲解

    关于python的算法一直都是让我们又爱又恨,但是如果可以灵活运用起来,对我们的编写代码过程,可以大大提高效率,针对算法之一"归并排序"的灵活掌握,一起来看下吧~ 归并算法--小试牛刀 实例内容: 有 1 个无序列表如下: list = [23,35,12,34,54,78,76,99] 要求:使其按从小到大排序 图示思路 Python 代码 归并排序理解: 1.通过二分法把一个数组按照递归拆分为左右两组(至到独立元素为止) 2.按照从底层往高层的方法左右数组对比,同时对两个数组的第一

  • python搜索算法原理及实例讲解

    一般我们在解决问题时候,经常能碰到好几种解决方式,总归是有最优,还有最不推荐的选择的,针对搜索算法也一样,因为能实现的方式也有很多个,因此,不知道大家在什么场景里使用这些算法,反正小编都把这些算法整理出来了,供大家选择,另外针对个人理解,大家也可以参考哪个更好使用哦~ 搜索算法 线性搜索 按一定的顺序检查数组中每一个元素,直到找到所要寻找的特定值为止.是最简单的一种搜索算法. 二分搜索算法 这种搜索算法每一次比较都使搜索范围缩小一半. 插值搜索算法 是根据要查找的关键字key与顺序表中最大.最小

  • 工程师必须了解的LRU缓存淘汰算法以及python实现过程

    大家好,欢迎大家来到算法数据结构专题,今天我们和大家聊一个非常常用的算法,叫做LRU. LRU的英文全称是Least Recently Used,也即最不经常使用.我们看着好像挺迷糊的,其实这个含义要结合缓存一起使用.对于工程而言,缓存是非常非常重要的机制,尤其是在当下的互联网应用环境当中,起到的作用非常重要.为了便于大家更好地理解,我们从缓存的机制开始说起. 缓存 缓存的英文是cache,最早其实指的是用于CPU和主存数据交互的.早年这块存储被称为高速缓存,最近已经听不到这个词了,不知道是不是

  • python实现AdaBoost算法的示例

    代码 ''' 数据集:Mnist 训练集数量:60000(实际使用:10000) 测试集数量:10000(实际使用:1000) 层数:40 ------------------------------ 运行结果: 正确率:97% 运行时长:65m ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 da

随机推荐