python实现图片,视频人脸识别(opencv版)

图片人脸识别

import cv2

filepath = "img/xingye-1.png"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色

# OpenCV人脸识别分类器
classifier = cv2.CascadeClassifier(
 "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
color = (0, 255, 0) # 定义绘制颜色
# 调用识别人脸
faceRects = classifier.detectMultiScale(
 gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects): # 大于0则检测到人脸
 for faceRect in faceRects: # 单独框出每一张人脸
 x, y, w, h = faceRect
 # 框出人脸
 cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
 # 左眼
 cv2.circle(img, (x + w // 4, y + h // 4 + 30), min(w // 8, h // 8),
   color)
 #右眼
 cv2.circle(img, (x + 3 * w // 4, y + h // 4 + 30), min(w // 8, h // 8),
   color)
 #嘴巴
 cv2.rectangle(img, (x + 3 * w // 8, y + 3 * h // 4),
   (x + 5 * w // 8, y + 7 * h // 8), color)

cv2.imshow("image", img) # 显示图像
c = cv2.waitKey(10)

cv2.waitKey(0)
cv2.destroyAllWindows()

视频人脸识别

# -*- coding:utf-8 -*-
# OpenCV版本的视频检测
import cv2

# 图片识别方法封装
def discern(img):
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 cap = cv2.CascadeClassifier(
 "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
 )
 faceRects = cap.detectMultiScale(
 gray, scaleFactor=1.2, minNeighbors=3, minSize=(50, 50))
 if len(faceRects):
 for faceRect in faceRects:
  x, y, w, h = faceRect
  cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸
 cv2.imshow("Image", img)

# 获取摄像头0表示第一个摄像头
cap = cv2.VideoCapture(0)
while (1): # 逐帧显示
 ret, img = cap.read()
 # cv2.imshow("Image", img)
 discern(img)
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break
cap.release() # 释放摄像头
cv2.destroyAllWindows() # 释放窗口资源

以上就是python实现图像,视频人脸识别(opencv版)的详细内容,更多关于python 人脸识别的资料请关注我们其它相关文章!

(0)

相关推荐

  • python使用mediapiple+opencv识别视频人脸的实现

    目录 1.安装 2.代码实现 3.更新 mediapiple+threadpool+opencv实现图片人脸采集效率高于dlib 1.安装 pip install mediapipe 2.代码实现 # -*- coding: utf-8 -*- """ @Time : 2022/3/18 14:43 @Author : liwei @Description: """ import cv2 import mediapipe as mp mp_dra

  • python实现图片,视频人脸识别(opencv版)

    图片人脸识别 import cv2 filepath = "img/xingye-1.png" img = cv2.imread(filepath) # 读取图片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器 classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haar

  • python实现图像,视频人脸识别(opencv版)

    图片人脸识别 import cv2 filepath = "img/xingye-1.png" img = cv2.imread(filepath) # 读取图片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器 classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haar

  • python实现图片,视频人脸识别(dlib版)

    图片人脸检测 #coding=utf-8 import cv2 import dlib path = "img/meinv.png" img = cv2.imread(path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #人脸分类器 detector = dlib.get_frontal_face_detector() # 获取人脸检测器 predictor = dlib.shape_predictor( "C:\\Pytho

  • 基于Python实现简单的人脸识别系统

    目录 前言 基本原理 代码实现 创建虚拟环境 安装必要的库 前言 最近又多了不少朋友关注,先在这里谢谢大家.关注我的朋友大多数都是大学生,而且我简单看了一下,低年级的大学生居多,大多数都是为了完成课程设计,作为一个过来人,还是希望大家平时能多抽出点时间学习一下,这种临时抱佛脚的策略要少用嗷.今天我们来python实现一个人脸识别系统,主要是借助了dlib这个库,相当于我们直接调用现成的库来进行人脸识别,就省去了之前教程中的数据收集和模型训练的步骤了. B站视频:用300行代码实现人脸识别系统_哔

  • Python基于Dlib的人脸识别系统的实现

    之前已经介绍过人脸识别的基础概念,以及基于opencv的实现方式,今天,我们使用dlib来提取128维的人脸嵌入,并使用k临近值方法来实现人脸识别. 人脸识别系统的实现流程与之前是一样的,只是这里我们借助了dlib和face_recognition这两个库来实现.face_recognition是对dlib库的包装,使对dlib的使用更方便.所以首先要安装这2个库. pip3 install dlib pip3 install face_recognition 然后,还要安装imutils库 p

  • 用Python实现简单的人脸识别功能步骤详解

    前言 让我的电脑认识我,我的电脑只有认识我,才配称之为我的电脑! 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花

  • 使用Python实现简单的人脸识别功能(附源码)

    目录 前言 一.首先 二.接下来 1.对照人脸获取 2. 通过算法建立对照模型 3.识别 前言 今天,我们用Python实现简单的人脸识别技术! Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的.这里介绍的是准确性比较高的一种. 一.首先 梳理一下实现人脸识别需要进行的步骤: 流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比

  • 如何用python反转图片,视频

    利用python反转图片/视频 准备:一张图片/一段视频 python库:Pillow,moviepy 安装库 pip install Pillow -i https://mirrors.aliyun.com/pypi/simple pip install moviepy -i https://mirrors.aliyun.com/pypi/simple 默认官方镜像源,我这里尝试的时候没有任何进度.切换到国内的源,比如阿里镜像,清华镜像即可.第一次使用国内源,简直是神速! 反转效果 反转后 实

  • python实现图片加文字水印OPenCV和PIL库

    目录 一:openCV给图片添加水印 二:使用PIL给图片添加水印 在python中我们可以使用openCV给图片添加水印,这里注意openCV无法添加汉字水印,添加汉字水印上可使用PIL库给图片添加水印 一:openCV给图片添加水印 1:安装openCV pip install opencv-python 2:使用openCV给图片添加水印实例: # -*- coding: utf-8 -*- import cv2 # 载入突破 img = cv2.imread('test.jpg') #

  • opencv 做人脸识别 opencv 人脸匹配分析

    机器学习 机器学习的目的是把数据转换成信息. 机器学习通过从数据里提取规则或模式来把数据转成信息. 人脸识别 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸. 每个节点的正确识别率很高,但正确拒绝率很低. 任一节点判断没有人脸特征则结束运算,宣布不是人脸. 全部节点通过,则宣布是人脸. 工业上,常用人脸识别技术来识别物体. 对图片进行识别 复制代码 代码如下: #include "opencv2/core/core.hpp" #include "opencv2/obj

随机推荐