如何用python爬取微博热搜数据并保存

主要用到requests和bf4两个库
将获得的信息保存在d://hotsearch.txt下

import requests;
import bs4
mylist=[]
r = requests.get(url='https://s.weibo.com/top/summary?Refer=top_hot&topnav=1&wvr=6',timeout=10)
print(r.status_code) # 获取返回状态
r.encoding=r.apparent_encoding
demo = r.text
from bs4 import BeautifulSoup
soup = BeautifulSoup(demo,"html.parser")
for link in soup.find('tbody') :
 hotnumber=''
 if isinstance(link,bs4.element.Tag):
#  print(link('td'))
  lis=link('td')
  hotrank=lis[1]('a')[0].string#热搜排名
  hotname=lis[1].find('span')#热搜名称
  if isinstance(hotname,bs4.element.Tag):
   hotnumber=hotname.string#热搜指数
   pass
  mylist.append([lis[0].string,hotrank,hotnumber,lis[2].string])
f=open("d://hotsearch.txt","w+")
for line in mylist:
 f.write('%s %s %s %s\n'%(line[0],line[1],line[2],line[3]))

知识点扩展:利用python爬取微博热搜并进行数据分析

爬取微博热搜

import schedule
import pandas as pd
from datetime import datetime
import requests
from bs4 import BeautifulSoup

url = "https://s.weibo.com/top/summary?cate=realtimehot&sudaref=s.weibo.com&display=0&retcode=6102"
get_info_dict = {}
count = 0

def main():
  global url, get_info_dict, count
  get_info_list = []
  print("正在爬取数据~~~")
  html = requests.get(url).text
  soup = BeautifulSoup(html, 'lxml')
  for tr in soup.find_all(name='tr', class_=''):
    get_info = get_info_dict.copy()
    get_info['title'] = tr.find(class_='td-02').find(name='a').text
    try:
      get_info['num'] = eval(tr.find(class_='td-02').find(name='span').text)
    except AttributeError:
      get_info['num'] = None
    get_info['time'] = datetime.now().strftime("%Y/%m/%d %H:%M")
    get_info_list.append(get_info)
  get_info_list = get_info_list[1:16]
  df = pd.DataFrame(get_info_list)
  if count == 0:
    df.to_csv('datas.csv', mode='a+', index=False, encoding='gbk')
    count += 1
  else:
    df.to_csv('datas.csv', mode='a+', index=False, header=False, encoding='gbk')

# 定时爬虫
schedule.every(1).minutes.do(main)

while True:
  schedule.run_pending()

pyecharts数据分析

import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Bar, Timeline, Grid
from pyecharts.globals import ThemeType, CurrentConfig

df = pd.read_csv('datas.csv', encoding='gbk')
print(df)
t = Timeline(init_opts=opts.InitOpts(theme=ThemeType.MACARONS)) # 定制主题
for i in range(int(df.shape[0]/15)):
  bar = (
    Bar()
      .add_xaxis(list(df['title'][i*15: i*15+15][::-1])) # x轴数据
      .add_yaxis('num', list(df['num'][i*15: i*15+15][::-1])) # y轴数据
      .reversal_axis() # 翻转
      .set_global_opts( # 全局配置项
      title_opts=opts.TitleOpts( # 标题配置项
        title=f"{list(df['time'])[i * 15]}",
        pos_right="5%", pos_bottom="15%",
        title_textstyle_opts=opts.TextStyleOpts(
          font_family='KaiTi', font_size=24, color='#FF1493'
        )
      ),
      xaxis_opts=opts.AxisOpts( # x轴配置项
        splitline_opts=opts.SplitLineOpts(is_show=True),
      ),
      yaxis_opts=opts.AxisOpts( # y轴配置项
        splitline_opts=opts.SplitLineOpts(is_show=True),
        axislabel_opts=opts.LabelOpts(color='#DC143C')
      )
    )
      .set_series_opts( # 系列配置项
      label_opts=opts.LabelOpts( # 标签配置
        position="right", color='#9400D3')
    )
  )
  grid = (
    Grid()
      .add(bar, grid_opts=opts.GridOpts(pos_left="24%"))
  )
  t.add(grid, "")
  t.add_schema(
    play_interval=1000, # 轮播速度
    is_timeline_show=False, # 是否显示 timeline 组件
    is_auto_play=True, # 是否自动播放
  )

t.render('时间轮播图.html')

到此这篇关于如何用python爬取微博热搜数据并保存的文章就介绍到这了,更多相关python爬取微博热搜数据内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python大数据之从网页上爬取数据的方法详解

    本文实例讲述了Python大数据之从网页上爬取数据的方法.分享给大家供大家参考,具体如下: myspider.py  : #!/usr/bin/python # -*- coding:utf-8 -*- from scrapy.spiders import Spider from lxml import etree from jredu.items import JreduItem class JreduSpider(Spider): name = 'tt' #爬虫的名字,必须的,唯一的 all

  • python爬虫爬取网页表格数据

    用python爬取网页表格数据,供大家参考,具体内容如下 from bs4 import BeautifulSoup import requests import csv import bs4 #检查url地址 def check_link(url): try: r = requests.get(url) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: print('无法链接服务器!!!')

  • python+selenium定时爬取丁香园的新型冠状病毒数据并制作出类似的地图(部署到云服务器)

    前言 硬要说这篇文章怎么来的,那得先从那几个吃野味的人开始说起-- 前天睡醒:假期还有几天:昨天睡醒:假期还有十几天:今天睡醒:假期还有一个月-- 每天过着几乎和每个假期一样的宅男生活,唯一不同的是玩手机已不再是看剧.看电影.打游戏了,而是每天都在关注着这次新冠肺炎疫情的新闻消息,真得希望这场战"疫"快点结束,让我们过上像以前一样的生活.武汉加油!中国加油!! 本次爬取的网站是丁香园点击跳转,相信大家平时都是看这个的吧. 一.准备 python3.7 selenium:自动化测试框架,

  • python多线程+代理池爬取天天基金网、股票数据过程解析

    简介 提到爬虫,大部分人都会想到使用Scrapy工具,但是仅仅停留在会使用的阶段.为了增加对爬虫机制的理解,我们可以手动实现多线程的爬虫过程,同时,引入IP代理池进行基本的反爬操作. 本次使用天天基金网进行爬虫,该网站具有反爬机制,同时数量足够大,多线程效果较为明显. 技术路线 IP代理池 多线程 爬虫与反爬 编写思路 首先,开始分析天天基金网的一些数据.经过抓包分析,可知: ./fundcode_search.js包含所有基金的数据,同时,该地址具有反爬机制,多次访问将会失败的情况. 同时,经

  • 用python爬取历史天气数据的方法示例

    某天气网站(www.数字.com)存有2011年至今的天气数据,有天看到一本爬虫教材提到了爬取这些数据的方法,学习之,并加以改进. 准备爬的历史天气 爬之前先分析url.左上有年份.月份的下拉选择框,按F12,进去看看能否找到真正的url: 很容易就找到了,左边是储存月度数据的js文件,右边是文件源代码,貌似json格式. 双击左边js文件,地址栏内出现了url:http://tianqi.数字.com/t/wea_history/js/54511_20161.js url中的"54511&qu

  • 实例讲解Python爬取网页数据

    一.利用webbrowser.open()打开一个网站: >>> import webbrowser >>> webbrowser.open('http://i.firefoxchina.cn/?from=worldindex') True 实例:使用脚本打开一个网页. 所有Python程序的第一行都应以#!python开头,它告诉计算机想让Python来执行这个程序.(我没带这行试了试,也可以,可能这是一种规范吧) 1.从sys.argv读取命令行参数:打开一个新的文

  • python爬取网站数据保存使用的方法

    编码问题因为涉及到中文,所以必然地涉及到了编码的问题,这一次借这个机会算是彻底搞清楚了.问题要从文字的编码讲起.原本的英文编码只有0~255,刚好是8位1个字节.为了表示各种不同的语言,自然要进行扩充.中文的话有GB系列.可能还听说过Unicode和UTF-8,那么,它们之间是什么关系呢?Unicode是一种编码方案,又称万国码,可见其包含之广.但是具体存储到计算机上,并不用这种编码,可以说它起着一个中间人的作用.你可以再把Unicode编码(encode)为UTF-8,或者GB,再存储到计算机

  • Python爬取数据并写入MySQL数据库的实例

    首先我们来爬取 http://html-color-codes.info/color-names/ 的一些数据. 按 F12 或 ctrl+u 审查元素,结果如下: 结构很清晰简单,我们就是要爬 tr 标签里面的 style 和 tr 下几个并列的 td 标签,下面是爬取的代码: #!/usr/bin/env python # coding=utf-8 import requests from bs4 import BeautifulSoup import MySQLdb print('连接到m

  • 通过抓取淘宝评论为例讲解Python爬取ajax动态生成的数据(经典)

    在学习python的时候,一定会遇到网站内容是通过 ajax动态请求.异步刷新生成的json数据 的情况,并且通过python使用之前爬取静态网页内容的方式是不可以实现的,所以这篇文章将要讲述如果在python中爬取ajax动态生成的数据. 至于读取静态网页内容的方式,有兴趣的可以查看本文内容. 这里我们以爬取淘宝评论为例子讲解一下如何去做到的. 这里主要分为了四步: 一 获取淘宝评论时,ajax请求链接(url) 二 获取该ajax请求返回的json数据 三 使用python解析json数据

  • python 爬取疫情数据的源码

    疫情数据 程序源码 // An highlighted block import requests import json class epidemic_data(): def __init__(self, province): self.url = url self.header = header self.text = {} self.province = province # self.r=None def down_page(self): r = requests.get(url=url

  • Python如何爬取实时变化的WebSocket数据的方法

    一.前言 作为一名爬虫工程师,在工作中常常会遇到爬取实时数据的需求,比如体育赛事实时数据.股市实时数据或币圈实时变化的数据.如下图: Web 领域中,用于实现数据'实时'更新的手段有轮询和 WebSocket 这两种.轮询指的是客户端按照一定时间间隔(如 1 秒)访问服务端接口,从而达到 '实时' 的效果,虽然看起来数据像是实时更新的,但实际上它有一定的时间间隔,并不是真正的实时更新.轮询通常采用 拉 模式,由客户端主动从服务端拉取数据. WebSocket 采用的是 推 模式,由服务端主动将数

随机推荐