详解SPI在Dubbo中的应用

目录
  • 一、概述
  • 二、JDK自带SPI
    • 2.1、代码示例
    • 2.2、简单分析
  • 三、SPI与双亲委派
    • 3.1、SPI加载到何处
    • 3.2、SPI是否破坏了双亲委派
  • 四、Dubbo SPI
    • 4.1、基本概念
    • 4.2、代码示例
    • 4.3、源码分析
  • 五、总结

一、概述

SPI 全称为 Service Provider Interface,是一种模块间组件相互引用的机制。其方案通常是提供方将接口实现类的全名配置在classPath下的指定文件中,由调用方读取并加载。这样需要替换某个组件时,只需要引入新的JAR包并在其中包含新的实现类和配置文件即可,调用方的代码无需任何调整。优秀的SPI框架能够提供单接口多实现类时的优先级选择,由用户指定选择哪个实现。

得益于这些能力,SPI对模块间的可插拔机制和动态扩展提供了非常好的支撑。

本文将简单介绍JDK自带的SPI,分析SPI和双亲委派的关系,进而重点分析DUBBO的SPI机制;比较两者有何不同,DUBBO的SPI带来了哪些额外的能力。

二、JDK自带SPI

提供者在classPath或者jar包的META-INF/services/目录创建以服务接口命名的文件,调用者通过java.util.ServiceLoader加载文件内容中指定的实现类。

2.1、代码示例

首先定义一个接口Search

search示例接口

package com.example.studydemo.spi;
public interface Search {
    void search();
}

实现类FileSearchImpl实现该接口

文件搜索实现类

package com.example.studydemo.spi;
public class FileSearchImpl implements Search {
    @Override
    public void search() {
        System.out.println("文件搜索");
    }
}

实现类DataBaseSearchImpl实现该接口

数据库搜索实现类

package com.example.studydemo.spi;
public class DataBaseSearchImpl implements Search {
    @Override
    public void search() {
        System.out.println("数据库搜索");
    }
}

在项目的META-INF/services文件夹下,创建Search文件

文件内容为:

com.example.studydemo.spi.DataBaseSearchImpl
com.example.studydemo.spi.FileSearchImpl

测试:

import java.util.ServiceLoader;
public class JavaSpiTest {
    public static void main(String[] args) {
        ServiceLoader<Search> searches = ServiceLoader.load(Search.class);
        searches.forEach(Search::search);
    }
}

结果为:

2.2、简单分析

ServiceLoader作为JDK提供的一个服务实现查找工具类,调用自身load方法加载Search接口的所有实现类,然后可以使用for循环遍历实现类进行方法调用。

有一个疑问:META-INF/services/目录是硬编码的吗,其它路径行不行?答案是不行。

跟进到ServiceLoader类中,第一行代码就是private static final String PREFIX = “META-INF/services/”,所以SPI配置文件只能放在classPath或者jar包的这个指定目录下面。

ServiceLoader的文件载入路径

public final class ServiceLoader<S>
    implements Iterable<S>
{
    //硬编码写死了文件路径
    private static final String PREFIX = "META-INF/services/";

    // The class or interface representing the service being loaded
    private final Class<S> service;

    // The class loader used to locate, load, and instantiate providers
    private final ClassLoader loader;

JDK SPI的使用比较简单,做到了基本的加载扩展组件的功能,但有以下几点不足:

  • 需要遍历所有的实现并实例化,想要找到某一个实现只能循环遍历,一个一个匹配;
  • 配置文件中只是简单的列出了所有的扩展实现,而没有给他们命名,导致在程序中很难去准确的引用它们;
  • 扩展之间彼此存在依赖,做不到自动注入和装配,不提供上下文内的IOC和AOP功能;
  • 扩展很难和其他的容器框架集成,比如扩展依赖了一个外部spring容器中的bean,原生的JDK SPI并不支持。

三、SPI与双亲委派

3.1、SPI加载到何处

基于类加载的双亲委派原则,由JDK内部加载的class默认应该归属于bootstrap类加载器,那么SPI机制加载的class是否也属于bootstrap呢 ?

答案是否定的,原生SPI机制通过ServiceLoader.load方法由外部指定类加载器,或者默认取Thread.currentThread().getContextClassLoader()线程上下文的类加载器,从而避免了class被载入bootstrap加载器。

3.2、SPI是否破坏了双亲委派

双亲委派的本质涵义是在rt.jar包和外部class之间建立一道classLoader的鸿沟,即rt.jar内的class不应由外部classLoader加载,外部class不应由bootstrap加载。

SPI仅是提供了一种在JDK代码内部干预外部class文件加载的机制,并未强制指定加载到何处;外部的class还是由外部的classLoader加载,未跨越这道鸿沟,也就谈不上破坏双亲委派。

原生ServiceLoader的类加载器

//指定类加载器
public static <S> ServiceLoader<S> load(Class<S> service,ClassLoader loader)
//默认取前线程上下文的类加载器
public static <S> ServiceLoader<S> load(Class<S> service)

四、Dubbo SPI

Dubbo借鉴了Java SPI的思想,与JDK的ServiceLoader相对应的,Dubbo设计了ExtensionLoader类,其提供的功能比JDK更为强大。

4.1、基本概念

首先介绍一些基本概念,让大家有一个初步的认知。

扩展点(Extension Point):是一个Java的接口。

扩展(Extension):扩展点的实现类

扩展实例(Extension Instance):扩展点实现类的实例。

自适应扩展实例(Extension Adaptive Instance)

自适应扩展实例其实就是一个扩展类的代理对象,它实现了扩展点接口。在调用扩展点的接口方法时,会根据实际的参数来决定要使用哪个扩展。

比如一个Search的扩展点,有一个search方法。有两个实现FileSearchImpl和DataBaseSearchImpl。Search的自适应实例在调用接口方法的时候,会根据search方法中的参数,来决定要调用哪个Search的实现。

如果方法参数中有name=FileSearchImpl,那么就调用FileSearchImpl的search方法。如果name=DataBaseSearchImpl,就调用DataBaseSearchImpl的search方法。自适应扩展实例在Dubbo中的使用非常广泛。

在Dubbo中每一个扩展点都可以有自适应的实例,如果我们没有使用@Adaptive人工指定,Dubbo会使用字节码工具自动生成一个。

SPI Annotation

作用于扩展点的接口上,表明该接口是一个扩展点,可以被Dubbo的ExtentionLoader加载

Adaptive

@Adaptive注解可以使用在类或方法上。用在方法上表示这是一个自适应方法,Dubbo生成自适应实例时会在方法中植入动态代理的代码。方法内部会根据方法的参数来决定使用哪个扩展。

@Adaptive注解用在类上代表该实现类是一个自适应类,属于人为指定的场景,Dubbo就不会为该SPI接口生成代理类,最典型的应用如AdaptiveCompiler、AdaptiveExtensionFactory等。

@Adaptive注解的值为字符串数组,数组中的字符串是key值,代码中要根据key值来获取对应的Value值,进而加载相应的extension实例。比如new String[]{“key1”,”key2”},表示会先在URL中寻找key1的值,

如果找到则使用此值加载extension,如果key1没有,则寻找key2的值,如果key2也没有,则使用SPI注解的默认值,如果SPI注解没有默认值,则将接口名按照首字母大写分成多个部分,

然后以'.'分隔,例如org.apache.dubbo.xxx.YyyInvokerWrapper接口名会变成yyy.invoker.wrapper,然后以此名称做为key到URL寻找,如果仍没有找到则抛出IllegalStateException异常。

ExtensionLoader

类似于Java SPI的ServiceLoader,负责扩展的加载和生命周期维护。ExtensionLoader的作用包括:解析配置文件加载extension类、生成extension实例并实现IOC和AOP、创建自适应的extension等,下文会重点分析。

扩展名

和Java SPI不同,Dubbo中的扩展都有一个名称,用于在应用中引用它们。比如
registry=com.alibaba.dubbo.registry.integration.RegistryProtocol
dubbo=com.alibaba.dubbo.rpc.protocol.dubbo.DubboProtocol

加载路径

Java SPI从/META-INF/services目录加载扩展配置,Dubbo从以下路径去加载扩展配置文件:
META-INF/dubbo/internal
META-INF/dubbo
META-INF/services
其中META-INF/dubbo对开发者发放,META-INF/dubbo/internal 这个路径是用来加载Dubbo内部的拓展点的。

4.2、代码示例

定义一个接口,标注上dubbo的SPI注解,赋予默认值,并提供两个extension实现类

package com.example.studydemo.spi;
@SPI("dataBase")
public interface Search {
    void search();
}
public class FileSearchImpl implements Search {
    @Override
    public void search() {
        System.out.println("文件搜索");
    }
}
public class DataBaseSearchImpl implements Search {
    @Override
    public void search() {
        System.out.println("数据库搜索");
    }
}

在META-INF/dubbo 路径下创建Search文件

文件内容如下:

dataBase=com.example.studydemo.spi.DataBaseSearchImpl
file=com.example.studydemo.spi.FileSearchImpl

编写测试类进行测试,内容如下:

public class DubboSpiTest {
    public static void main(String[] args) {
        ExtensionLoader<Search> extensionLoader = ExtensionLoader.getExtensionLoader(Search.class);
        Search fileSearch = extensionLoader.getExtension("file");
        fileSearch.search();
        Search dataBaseSearch = extensionLoader.getExtension("dataBase");
        dataBaseSearch.search();
        System.out.println(extensionLoader.getDefaultExtensionName());
        Search defaultSearch = extensionLoader.getDefaultExtension();
        defaultSearch.search();
    }
}

结果为:

从代码示例上来看,Dubbo SPI与Java SPI在这几方面是类似的:

  • 接口及相应的实现
  • 配置文件
  • 加载类及加载具体实现

4.3、源码分析

下面深入到源码看看SPI在Dubbo中是怎样工作的,以Protocol接口为例进行分析。

//1、得到Protocol的扩展加载对象extensionLoader,由这个加载对象获得对应的自适应扩展类
Protocol protocol = ExtensionLoader.getExtensionLoader(Protocol.class).getAdaptiveExtension();
//2、根据扩展名获取对应的扩展类
Protocol protocol = ExtensionLoader.getExtensionLoader(Protocol.class).getExtension("dubbo");

在获取扩展实例前要先获取Protocol接口的ExtensionLoader组件,通过ExtensionLoader来获取相应的Protocol实例Dubbo实际是为每个SPI接口都创建了一个对应的ExtensionLoader。

ExtensionLoader组件

public static <T> ExtensionLoader<T> getExtensionLoader(Class<T> type) {
    if (type == null)
        throw new IllegalArgumentException("Extension type == null");
    if(!type.isInterface()) {
        throw new IllegalArgumentException("Extension type(" + type + ") is not interface!");
    }
    if(!withExtensionAnnotation(type)) {
        throw new IllegalArgumentException("Extension type(" + type +
                ") is not extension, because WITHOUT @" + SPI.class.getSimpleName() + " Annotation!");
    }
    //EXTENSION_LOADERS为ConcurrentMap,存储Class对应的ExtensionLoader
    ExtensionLoader<T> loader = (ExtensionLoader<T>) EXTENSION_LOADERS.get(type);
    if (loader == null) {
        EXTENSION_LOADERS.putIfAbsent(type, new ExtensionLoader<T>(type));
        loader = (ExtensionLoader<T>) EXTENSION_LOADERS.get(type);
    }
    return loader;
}

EXTENSION_LOADERS是一个 ConcurrentMap,以接口Protocol为key,以ExtensionLoader对象为value;保存的是Protocol扩展的加载类,第一次加载的时候Protocol还没有自己的接口加载类,需要实例化一个。

再看new ExtensionLoader<T>(type) 这个操作,下面为ExtensionLoader的构造方法:

rivate ExtensionLoader(Class<?> type) {
    this.type = type;
    objectFactory = (type == ExtensionFactory.class ? null : ExtensionLoader.getExtensionLoader(ExtensionFactory.class).getAdaptiveExtension());
}

每一个ExtensionLoader都包含2个值:type和objectFactory,此例中type就是Protocol,objectFactory就是ExtensionFactory。

对于ExtensionFactory接口来说,它的加载类中objectFactory值为null。

对于其他的接口来说,objectFactory都是通过ExtensionLoader.getExtensionLoader(ExtensionFactory.class).getAdaptiveExtension()来获取;objectFactory的作用就是为dubbo的IOC提供依赖注入的对象,可以认为是进程内多个组件容器的一个上层引用,

随着这个方法的调用次数越来越多,EXTENSION_LOADERS 中存储的 loader 也会越来越多。

自适应扩展类与IOC

得到ExtensionLoader组件之后,再看如何获得自适应扩展实例。

public T getAdaptiveExtension() {
    //cachedAdaptiveInstance为缓存的自适应对象,第一次调用时还没有创建自适应类,所以instance为null
    Object instance = cachedAdaptiveInstance.get();
    if (instance == null) {
        if(createAdaptiveInstanceError == null) {
            synchronized (cachedAdaptiveInstance) {
                instance = cachedAdaptiveInstance.get();
                if (instance == null) {
                    try {
                        //创建自适应对象实例
                        instance = createAdaptiveExtension();
                        //将自适应对象放到缓存中
                        cachedAdaptiveInstance.set(instance);
                    } catch (Throwable t) {
                        createAdaptiveInstanceError = t;
                        throw new IllegalStateException("fail to create adaptive instance: " + t.toString(), t);
                    }
                }
            }
        }
        else {
            throw new IllegalStateException("fail to create adaptive instance: " + createAdaptiveInstanceError.toString(), createAdaptiveInstanceError);
        }
    }

    return (T) instance;
}

首先从cachedAdaptiveInstance缓存中获取,第一次调用时还没有相应的自适应扩展,需要创建自适应实例,创建后再将该实例放到cachedAdaptiveInstance缓存中。

创建自适应实例参考createAdaptiveExtension方法,该方法包含两部分内容:创建自适应扩展类并利用反射实例化、利用IOC机制为该实例注入属性。

private T createAdaptiveExtension() {
    try {
        //得到自适应扩展类并利用反射实例化,然后注入属性值
        return injectExtension((T) getAdaptiveExtensionClass().newInstance());
    } catch (Exception e) {
        throw new IllegalStateException("Can not create adaptive extenstion " + type + ", cause: " + e.getMessage(), e);
    }
}

再来分析getAdaptiveExtensionClass方法,以Protocol接口为例,该方法会做以下事情:获取所有实现Protocol接口的扩展类、如果有自适应扩展类直接返回、如果没有则创建自适应扩展类。

//该动态代理生成的入口
private Class<?> getAdaptiveExtensionClass() {
    //1.获取所有实现Protocol接口的扩展类
    getExtensionClasses();
    //2.如果有自适应扩展类,则返回
    if (cachedAdaptiveClass != null) {
        return cachedAdaptiveClass;
    }
    //3.如果没有,则创建自适应扩展类
    return cachedAdaptiveClass = createAdaptiveExtensionClass();
}

getExtensionClasses方法会加载所有实现Protocol接口的扩展类,首先从缓存中获取,缓存中没有则调用loadExtensionClasses方法进行加载并设置到缓存中,如下图所示:

private Map<String, Class<?>> getExtensionClasses() {
    //从缓存中获取
    Map<String, Class<?>> classes = cachedClasses.get();
    if (classes == null) {
        synchronized (cachedClasses) {
            classes = cachedClasses.get();
            if (classes == null) {
                //从SPI配置文件中解析
                classes = loadExtensionClasses();
                cachedClasses.set(classes);
            }
        }
    }
    return classes;
}

loadExtensionClasses方法如下:首先获取SPI注解中的value值,作为默认扩展名称,在Protocol接口中SPI注解的value为dubbo,因此DubboProtocol就是Protocol的默认实现扩展。其次加载三个配置路径下的所有的Protocol接口的扩展实现。

// 此方法已经getExtensionClasses方法同步过。
private Map<String, Class<?>> loadExtensionClasses() {
    final SPI defaultAnnotation = type.getAnnotation(SPI.class);
    if(defaultAnnotation != null) {
        String value = defaultAnnotation.value();
        if(value != null && (value = value.trim()).length() > 0) {
            String[] names = NAME_SEPARATOR.split(value);
            if(names.length > 1) {
                throw new IllegalStateException("more than 1 default extension name on extension " + type.getName()
                        + ": " + Arrays.toString(names));
            }
            if(names.length == 1) cachedDefaultName = names[0];
        }
    }

    Map<String, Class<?>> extensionClasses = new HashMap<String, Class<?>>();
    //分别从三个路径加载
    loadFile(extensionClasses, DUBBO_INTERNAL_DIRECTORY);
    loadFile(extensionClasses, DUBBO_DIRECTORY);
    loadFile(extensionClasses, SERVICES_DIRECTORY);
    return extensionClasses;
}

private static final String SERVICES_DIRECTORY = "META-INF/services/";
private static final String DUBBO_DIRECTORY = "META-INF/dubbo/";
private static final String DUBBO_INTERNAL_DIRECTORY = DUBBO_DIRECTORY + "internal/";

在加载配置路径下的实现中,其中有一个需要关注的点,如果其中某个实现类上有Adaptive注解,说明用户指定了自适应扩展类,那么该实现类就会被赋给cachedAdaptiveClass,在getAdaptiveExtensionClass方法中会被直接返回。

如果该变量为空,则需要通过字节码工具来创建自适应扩展类。

private Class<?> createAdaptiveExtensionClass() {
    //生成类代码
    String code = createAdaptiveExtensionClassCode();
    //找到类加载器
    ClassLoader classLoader = findClassLoader();
    //获取编译器实现类,此处为AdaptiveCompiler,此类上有Adaptive注解
    com.alibaba.dubbo.common.compiler.Compiler compiler = ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.common.compiler.Compiler.class).getAdaptiveExtension();
    //将类代码编译为Class
    return compiler.compile(code, classLoader);
}

createAdaptiveExtensionClass方法生成的类代码如下:

package com.alibaba.dubbo.rpc;

import com.alibaba.dubbo.common.extension.ExtensionLoader;

public class Protocol$Adpative implements com.alibaba.dubbo.rpc.Protocol {
    public void destroy() {
        throw new UnsupportedOperationException("method public abstract void com.alibaba.dubbo.rpc.Protocol.destroy() of interface com.alibaba.dubbo.rpc.Protocol is not adaptive method!");
    }

    public int getDefaultPort() {
        throw new UnsupportedOperationException("method public abstract int com.alibaba.dubbo.rpc.Protocol.getDefaultPort() of interface com.alibaba.dubbo.rpc.Protocol is not adaptive method!");
    }

    public com.alibaba.dubbo.rpc.Invoker refer(java.lang.Class arg0, com.alibaba.dubbo.common.URL arg1) throws com.alibaba.dubbo.rpc.RpcException {
        if (arg1 == null) throw new IllegalArgumentException("url == null");
        com.alibaba.dubbo.common.URL url = arg1;
        String extName = (url.getProtocol() == null ? "dubbo" : url.getProtocol());
        if (extName == null)
            throw new IllegalStateException("Fail to get extension(com.alibaba.dubbo.rpc.Protocol) name from url(" + url.toString() + ") use keys([protocol])");
        com.alibaba.dubbo.rpc.Protocol extension = (com.alibaba.dubbo.rpc.Protocol) ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.rpc.Protocol.class).getExtension(extName);
        return extension.refer(arg0, arg1);
    }

    public com.alibaba.dubbo.rpc.Exporter export(com.alibaba.dubbo.rpc.Invoker arg0) throws com.alibaba.dubbo.rpc.RpcException {
        if (arg0 == null) throw new IllegalArgumentException("com.alibaba.dubbo.rpc.Invoker argument == null");
        if (arg0.getUrl() == null)
            throw new IllegalArgumentException("com.alibaba.dubbo.rpc.Invoker argument getUrl() == null");
        com.alibaba.dubbo.common.URL url = arg0.getUrl();
        String extName = (url.getProtocol() == null ? "dubbo" : url.getProtocol());
        if (extName == null)
            throw new IllegalStateException("Fail to get extension(com.alibaba.dubbo.rpc.Protocol) name from url(" + url.toString() + ") use keys([protocol])");
        com.alibaba.dubbo.rpc.Protocol extension = (com.alibaba.dubbo.rpc.Protocol) ExtensionLoader.getExtensionLoader(com.alibaba.dubbo.rpc.Protocol.class).getExtension(extName);
        return extension.export(arg0);
    }
} 

由字节码工具生成的类Protocol$Adpative在方法末尾调用了ExtensionLoader.getExtensionLoader(xxx).getExtension(extName)来满足adaptive的自适应动态特性。

传入的extName就是从url中获取的动态参数,用户只需要在代表DUBBO全局上下文信息的URL中指定protocol参数的取值,adaptiveExtentionClass就可以去动态适配不同的扩展实例。

再看属性注入方法injectExtension,针对public的只有一个参数的set方法进行处理,利用反射进行方法调用来实现属性注入,此方法是Dubbo SPI实现IOC功能的关键。

private T injectExtension(T instance) {
    try {
        if (objectFactory != null) {
            for (Method method : instance.getClass().getMethods()) {
                if (method.getName().startsWith("set")
                        && method.getParameterTypes().length == 1
                        && Modifier.isPublic(method.getModifiers())) {
                    Class<?> pt = method.getParameterTypes()[0];
                    try {
                        String property = method.getName().length() > 3 ? method.getName().substring(3, 4).toLowerCase() + method.getName().substring(4) : "";
                        Object object = objectFactory.getExtension(pt, property);
                        if (object != null) {
                            method.invoke(instance, object);
                        }
                    } catch (Exception e) {
                        logger.error("fail to inject via method " + method.getName()
                                + " of interface " + type.getName() + ": " + e.getMessage(), e);
                    }
                }
            }
        }
    } catch (Exception e) {
        logger.error(e.getMessage(), e);
    }
    return instance;

Dubbo IOC 是通过set方法注入依赖,Dubbo首先会通过反射获取到实例的所有方法,然后再遍历方法列表,检测方法名是否具有set方法特征。若有则通过ObjectFactory获取依赖对象。

最后通过反射调用set方法将依赖设置到目标对象中。objectFactory在创建加载类ExtensionLoader的时候已经创建了,因为@Adaptive是打在类AdaptiveExtensionFactory上,所以此处就是AdaptiveExtensionFactory。

AdaptiveExtensionFactory持有所有ExtensionFactory对象的集合,dubbo内部默认实现的对象工厂是SpiExtensionFactory和SpringExtensionFactory,他们经过TreeSet排好序,查找顺序是优先先从SpiExtensionFactory获取,如果返回空在从SpringExtensionFactory获取。

//有Adaptive注解说明该类是自适应类,不需要程序自己创建代理类
@Adaptive
public class AdaptiveExtensionFactory implements ExtensionFactory {
    //factories拥有所有ExtensionFactory接口的实现对象
    private final List<ExtensionFactory> factories;

    public AdaptiveExtensionFactory() {
        ExtensionLoader<ExtensionFactory> loader = ExtensionLoader.getExtensionLoader(ExtensionFactory.class);
        List<ExtensionFactory> list = new ArrayList<ExtensionFactory>();
        for (String name : loader.getSupportedExtensions()) {
            list.add(loader.getExtension(name));
        }
        factories = Collections.unmodifiableList(list);
    }
    //查找时会遍历factories,顺序优先从SpiExtensionFactory中获取,再从SpringExtensionFactory中获取,原因为初始化时getSupportedExtensions方法中使用TreeSet已经排序,见下图
    public <T> T getExtension(Class<T> type, String name) {
        for (ExtensionFactory factory : factories) {
            T extension = factory.getExtension(type, name);
            if (extension != null) {
                return extension;
            }
        }
        return null;
    }
}
public Set<String> getSupportedExtensions() {
    Map<String, Class<?>> clazzes = getExtensionClasses();
    return Collections.unmodifiableSet(new TreeSet<String>(clazzes.keySet()));
}

虽然有过度设计的嫌疑,但我们不得不佩服dubbo SPI设计的精巧。

  • 提供@Adaptive注解,既可以加在方法上通过参数动态适配到不同的扩展实例;又可以加在类上直接指定自适应扩展类。
  • 利用AdaptiveExtensionFactory统一了进程中的不同容器,将ExtensionLoader本身视为一个独立的容器,依赖注入时将会分别从Spring容器和ExtensionLoader容器中查找。

扩展实例和AOP

getExtension方法比较简单,重点在于createExtension方法,根据扩展名创建扩展实例。

public T getExtension(String name) {
   if (name == null || name.length() == 0)
       throw new IllegalArgumentException("Extension name == null");
   if ("true".equals(name)) {
       return getDefaultExtension();
   }
   Holder<Object> holder = cachedInstances.get(name);
   if (holder == null) {
       cachedInstances.putIfAbsent(name, new Holder<Object>());
       holder = cachedInstances.get(name);
   }
   Object instance = holder.get();
   if (instance == null) {
       synchronized (holder) {
            instance = holder.get();
            if (instance == null) {
                //根据扩展名创建扩展实例
                instance = createExtension(name);
                holder.set(instance);
            }
        }
   }
   return (T) instance;
}

createExtension方法中的部分内容上文已经分析过了,getExtensionClasses方法获取接口的所有实现类,然后通过name获取对应的Class。紧接着通过clazz.newInstance()来实例化该实现类,调用injectExtension为实例注入属性。

private T createExtension(String name) {
    //getExtensionClasses方法之前已经分析过,获取所有的扩展类,然后根据扩展名获取对应的扩展类
    Class<?> clazz = getExtensionClasses().get(name);
    if (clazz == null) {
        throw findException(name);
    }
    try {
        T instance = (T) EXTENSION_INSTANCES.get(clazz);
        if (instance == null) {
            EXTENSION_INSTANCES.putIfAbsent(clazz, (T) clazz.newInstance());
            instance = (T) EXTENSION_INSTANCES.get(clazz);
        }
        //属性注入
        injectExtension(instance);
        Set<Class<?>> wrapperClasses = cachedWrapperClasses;
        if (wrapperClasses != null && wrapperClasses.size() > 0) {
            for (Class<?> wrapperClass : wrapperClasses) {
                //包装类的创建及属性注入
                instance = injectExtension((T) wrapperClass.getConstructor(type).newInstance(instance));
            }
        }
        return instance;
    } catch (Throwable t) {
        throw new IllegalStateException("Extension instance(name: " + name + ", class: " +
                type + ")  could not be instantiated: " + t.getMessage(), t);
    }
}

在方法的最后有一段对于WrapperClass包装类的处理逻辑,如果接口存在包装类实现,那么就会返回包装类实例。实现AOP的关键就是WrapperClass机制,判断一个扩展类是否是WrapperClass的依据,是看其constructor函数中是否包含当前接口参数。

如果有就认为是一个wrapperClass,最终创建的实例是一个经过多个wrapperClass层层包装的结果;在每个wrapperClass中都可以编入面向切面的代码,从而就简单实现了AOP功能。

Activate活性扩展

对应ExtensionLoader的getActivateExtension方法,根据多个过滤条件从extension集合中智能筛选出您所需的那一部分。

getActivateExtension方法

public List<T> getActivateExtension(URL url, String[] names, String group);

首先这个方法只会返回带有Activate注解的扩展类,但并非带有注解的扩展类都会被返回。

names是明确指定所需要的那部分扩展类,非明确指定的扩展类需要满足group过滤条件和Activate注解本身指定的key过滤条件,非明确指定的会按照Activate注解中指定的排序规则进行排序;

getActivateExtension的返回结果是上述两种扩展类的总和。

Activate注解类

*/
@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})
public @interface Activate {
    /**
     * Group过滤条件。
     */
    String[] group() default {};

    /**
     * Key过滤条件。包含{@link ExtensionLoader#getActivateExtension}的URL的参数Key中有,则返回扩展。
     */
    String[] value() default {};

    /**
     * 排序信息,可以不提供。
     */
    String[] before() default {};

    /**
     * 排序信息,可以不提供。
     */
    String[] after() default {};

    /**
     * 排序信息,可以不提供。
     */
    int order() default 0;
}

活性Extension最典型的应用是rpc invoke时获取filter链条,各种filter有明确的执行优先级,同时也可以人为增添某些filter,filter还可以根据服务提供者和消费者进行分组过滤。

以TokenFilter为例,其注解为@Activate(group = Constants.PROVIDER, value = Constants.TOKEN_KEY),表示该过滤器只在服务提供方才会被加载,同时会验证注册地址url中是否带了token参数,如果有token表示服务端注册时指明了要做token验证,自然就需要加载该filter。

反之则不用加载;此filter加载后的执行逻辑则是从url中获取服务端注册时预设的token,再从rpc请求的attachments中获取消费方设置的remote token,比较两者是否一致,若不一致抛出RPCExeption异常阻止消费方的正常调用。

五、总结

Dubbo 所有的接口几乎都预留了扩展点,根据用户参数来适配不同的实现。如果想增加新的接口实现,只需要按照SPI的规范增加配置文件,并指向新的实现即可。

用户配置的Dubbo属性都会体现在URL全局上下文参数中,URL贯穿了整个Dubbo架构,是Dubbo各个layer组件间相互调用的纽带。

总结一下 Dubbo SPI 相对于 Java SPI 的优势:

  • Dubbo的扩展机制设计默认值,每个扩展类都有自己的名称,方便查找。
  • Dubbo的扩展机制支持IOC,AOP等高级功能。
  • Dubbo的扩展机制能和第三方IOC容器兼容,默认支持Spring Bean,也可扩展支持其他容器。
  • Dubbo的扩展类通过@Adaptive注解实现了动态代理功能,更强大的是它可以通过一个proxy映射多个不同的扩展类。
  • Dubbo的扩展类通过@Activate注解实现了不同扩展类的分组、过滤、排序功能,能够更好的适配较复杂的业务场景。

以上就是详解SPI在Dubbo中的应用的详细内容,更多关于SPI在Dubbo中的应用的资料请关注我们其它相关文章!

(0)

相关推荐

  • SpringBoot中dubbo+zookeeper实现分布式开发的应用详解

    总体实现思路是启动一个生产者项目注册, 将所含服务注册到zookeeper的注册中心, 然后在启动一个消费者项目,将所需服务向zookeeper注册中心进行订阅, 等待注册中心的通知 注册中心基于负载均衡算法给消费者匹配到合适的生产者主机,然后通知消费者可以使用 实现生产者 导入zookeeper依赖包 <!-- Dubbo Spring Boot Starter --> <dependency> <groupId>org.apache.dubbo</groupI

  • SpingBoot+Dubbo+Zookeeper实现简单分布式开发的应用详解

    开始接触分布式概念,学习之前要准备搭建Dubbo和Zookeeper环境的简单搭建. Window下安装Zookeeper和Dubbo-admin 1.Apache官网下载Zookeeper 点击官网地址下载最新版 下载完成后,打开apache-zookeeper-3.6.2-bin\bin下zkServer.cmd,正常第一次都会闪退的,因为没有配置好zoo.cfg配置文件. 将conf目录下的zoo_sample.cfg文件,复制一份,重命名为zoo.cfg 在apache-zookeepe

  • 浅析Java SPI 与 dubbo SPI

    Java原生SPI 面向接口编程+策略模式 实现 建立接口 Robot public interface Robot { /** * 测试方法1 */ void sayHello(); } 多个实现类实现接口 RobotA public class RobotA implements Robot { public RobotA() { System.out.println("Happy RobotA is loaded"); } @Override public void sayHel

  • 为什么程序中突然多了 200 个 Dubbo-thread 线程的说明

    背景 在某次查看程序线程堆栈信息时,偶然发现有 200 个 Dubbo-thread 线程,而且大部分都处于 WAITING 状态,如下所示: "Dubbo-thread-200" #160932 daemon prio=5 os_prio=0 tid=0x00007f5af9b54800 nid=0x79a6 waiting on condition [0x00007f5a9acd5000] java.lang.Thread.State: WAITING (parking) at s

  • Java和Dubbo的SPI机制原理解析

    SPI: 简单理解就是,你一个接口有多种实现,然后在代码运行时候,具体选用那个实现,这时候我们就可以通过一些特定的方式来告诉程序寻用那个实现类,这就是SPI. JAVA的SPI 全称为 Service Provider Interface,是一种服务发现机制.它是约定在 Classpath 下的 META-INF/services/ 目录里创建一个以服务接口命名的文件,然后文件里面记录的是此 jar 包提供的具体实现类的全限定名. 这样当我们引用了某个 jar 包的时候就可以去找这个 jar 包

  • 使用docker部署dubbo项目的方法步骤

    1.首先用springboot构建一个简单的dubbo测试程序,并引入相关依赖 编写公共接口api 编写provider实现UserSvice的方法,并暴露服务 编写provider的配置文件 编写Consumer 通过调用provider的服务获取user信息并返回 consumer的配置文件 测试程序已完成 在本地启动,看看程序是否能正常调用服务 启动zookeeper 先启动provider端再启动consumer端 通过dubbo的控制台看到我们的服务已经注册成功 通过访问本地,看到我们

  • python 如何调用 dubbo 接口

    公司后端服务使用 java 重构后,很多接口采用了阿里的 dubbo 协议.而 python 是无法直接调用 dubbo 接口的,但可以通过 telnet 调用,具体可以通过 telnetlib 模块的 Telnet类 来调用,只需要四行代码即可实现: import telnetlib # 创建telnet类对象 conn = telnetlib.Telnet() # 连接dubbo接口地址 conn.open(host, port) #1.cmd命令格式: 接口全名字.方法名(参数1,参数2,

  • springboot整合dubbo设置全局唯一ID进行日志追踪的示例代码

    1.新建项目 利用idea创建一个父项目,三个子项目,其中一个项目为生产者,一个项目为消费者,一个为接口等公共服务项目,生产者和消费者需要有web依赖,可以作为tomcat容器启动. 2.项目依赖 <dependencies> <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo-spring-boot-starter</artifactId> <v

  • 详解SPI在Dubbo中的应用

    目录 一.概述 二.JDK自带SPI 2.1.代码示例 2.2.简单分析 三.SPI与双亲委派 3.1.SPI加载到何处 3.2.SPI是否破坏了双亲委派 四.Dubbo SPI 4.1.基本概念 4.2.代码示例 4.3.源码分析 五.总结 一.概述 SPI 全称为 Service Provider Interface,是一种模块间组件相互引用的机制.其方案通常是提供方将接口实现类的全名配置在classPath下的指定文件中,由调用方读取并加载.这样需要替换某个组件时,只需要引入新的JAR包并

  • 详解SpringBoot基于Dubbo和Seata的分布式事务解决方案

    1. 分布式事务初探 一般来说,目前市面上的数据库都支持本地事务,也就是在你的应用程序中,在一个数据库连接下的操作,可以很容易的实现事务的操作. 但是目前,基于SOA的思想,大部分项目都采用微服务架构后,就会出现了跨服务间的事务需求,这就称为分布式事务. 本文假设你已经了解了事务的运行机制,如果你不了解事务,那么我建议先去看下事务相关的文章,再来阅读本文. 1.1 什么是分布式事务 对于传统的单体应用而言,实现本地事务可以依赖Spring的@Transactional注解标识方法,实现事务非常简

  • 详解如何在项目中应用SpringSecurity权限控制

    目录 1.Spring Security环境准备 2.实现认证和授权 3.在控制器上实现注解鉴权 4.请求获取当前登录的用户名信息 5.用户退出 要进行认证和授权需要前面课程中提到的权限模型涉及的7张表支撑,因为用户信息.权限信息.菜单信息.角色信息.关联信息等都保存在这7张表中,也就是这些表中的数据是我们进行认证和授权的依据.所以在真正进行认证和授权之前需要对这些数据进行管理,即我们需要开发如下一些功能: 1.权限数据管理(增删改查) 2.菜单数据管理(增删改查) 3.角色数据管理(增删改查.

  • 详解Kotlin Android开发中的环境配置

    详解Kotlin Android开发中的环境配置 在Android Studio上面进行安装插件 在Settings ->Plugins ->Browse repositores.. ->kotlin 安装完成后重启Android Studio就生效了 如图所示: 在Android Studio中做Kotlin相关配置 (1)在根目录 的build.gradle中进行配置使用,代码如下: buildscript { ext.kotlin_version = '1.1.2-4' repos

  • 详解Golang 与python中的字符串反转

    详解Golang 与python中的字符串反转 在go中,需要用rune来处理,因为涉及到中文或者一些字符ASCII编码大于255的. func main() { fmt.Println(reverse("Golang python")) } func reverse(src string) string { dst := []rune(src) len := len(dst) var result []rune result = make([]rune, 0) for i := le

  • 详解闭包解决jQuery中AJAX的外部变量问题

    详解闭包解决jQuery中AJAX的外部变量问题 在AJAX中,我们经常都要使用外部变量,经常会多次使用,如下代码 function getCarInfo(){ for(var i=0;i<4;i++){ var carId = $("#carList0"+i+" #carId").val(); var request = { city: city, carId: carId }; $.ajax({ url:"enquiry", type:

  • 详解微信小程序中的页面代码中的模板的封装

    详解微信小程序中的页面代码中的模板的封装 最近在进行微信小程序中的页面开发,其实在c++或者说是js中都会出现这种情况,就是相同的代码会反复出现,这就是进行一定的封装,封装的好处就是可以是程序中在于减少一定的代码量,并且可是使代码结构更加清晰.那今天所要记录的就是关于微信小程序中的页面的模板封装. 在微信小程序中的文件名都带有wxml等样式,在wxml中提供了模板,即可以在模板中定义代码片段,然后可以在页面中的不同位置进行调用,模板的定义: <templatename="products&

  • 详解C 语言项目中.h文件和.c文件的关系

    详解C 语言项目中.h文件和.c文件的关系 在编译器只认识.c(.cpp))文件,而不知道.h是何物的年代,那时的人们写了很多的.c(.cpp)文件,渐渐地,人们发现在很多.c(.cpp)文件中的声明语句就是相同的,但他们却不得不一个字一个字地重复地将这些内容敲入每个.c(.cpp)文件.但更为恐怖的是,当其中一个声明有变更时,就需要检查所有的.c(.cpp)文件. 于是人们将重复的部分提取出来,放在一个新文件里,然后在需要的.c(.cpp)文件中敲入#include XXXX这样的语句.这样即

  • 详解java面试题中的i++和++i

    代码如下所示: public class TestPlusPlus{ public static void main(String[] args){ int k = addAfterReturn(10); System.out.println(k); //输出 10 int k1 = addbeforeReturn(10); System.out.println(k1); //输出11 } public static int addbeforeReturn(int i){ return ++i;

  • 详解在YII2框架中使用UEditor编辑器发布文章

    本文介绍了详解在YII2框架中使用UEditor编辑器发布文章 ,分享给大家,具体如下: 创建文章数据表 文章数据表主要有4个字段 1.id  主键(int) 2.title 标题(varchar) 3.content 内容(text) 4.created_time 创建时间(int) 创建文章模型 创建文章模型,不要忘记设置验证规则和字段的名称 namespace backend\models; class Article extends \yii\db\ActiveRecord { publ

随机推荐