解析java中的condition

一、condition 介绍及demo

Condition是在java 1.5中才出现的,它用来替代传统的Object的wait()、notify()实现线程间的协作,相比使用Object的wait()、notify(),使用Condition的await()、signal()这种方式实现线程间协作更加安全和高效。因此通常来说比较推荐使用Condition,阻塞队列实际上是使用了Condition来模拟线程间协作。

  • Condition是个接口,基本的方法就是await()和signal()方法;
  • Condition依赖于Lock接口,生成一个Condition的基本代码是lock.newCondition()   
  • 调用Condition的await()和signal()方法,都必须在lock保护之内,就是说必须在lock.lock()和lock.unlock之间才可以使用

Conditon中的await()对应Object的wait();

Condition中的signal()对应Object的notify();

Condition中的signalAll()对应Object的notifyAll()。

condition常见例子arrayblockingqueue。下面是demo:

package thread;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ConTest {

	 final Lock lock = new ReentrantLock();
	 final Condition condition = lock.newCondition();

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		ConTest test = new ConTest();
	    Producer producer = test.new Producer();
	    Consumer consumer = test.new Consumer();

	    consumer.start();
	    producer.start();
	}

	 class Consumer extends Thread{

	        @Override
	        public void run() {
	            consume();
	        }

	        private void consume() {

	                try {
	                	   lock.lock();
	                    System.out.println("我在等一个新信号"+this.currentThread().getName());
	                    condition.await();

	                } catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					} finally{
						System.out.println("拿到一个信号"+this.currentThread().getName());
	                    lock.unlock();
	                }

	        }
	    }

	 class Producer extends Thread{

	        @Override
	        public void run() {
	            produce();
	        }

	        private void produce() {
	                try {
	                	   lock.lock();
	                       System.out.println("我拿到锁"+this.currentThread().getName());
	                        condition.signalAll();
	                    System.out.println("我发出了一个信号:"+this.currentThread().getName());
	                } finally{
	                    lock.unlock();
	                }
	            }
	 }

}

运行结果:

Condition的执行方式,是当在线程Consumer中调用await方法后,线程Consumer将释放锁,并且将自己沉睡,等待唤醒,线程Producer获取到锁后,开始做事,完毕后,调用Condition的signalall方法,唤醒线程Consumer,线程Consumer恢复执行。

以上说明Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition),只有当该条件具备( signal 或者 signalAll方法被带调用)时 ,这些等待线程才会被唤醒,从而重新争夺锁。

Condition实现生产者、消费者模式:

package thread;

import java.util.PriorityQueue;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class ConTest2 {
    private int queueSize = 10;
    private PriorityQueue<Integer> queue = new PriorityQueue<Integer>(queueSize);
    private Lock lock = new ReentrantLock();
    private Condition notFull = lock.newCondition();
    private Condition notEmpty = lock.newCondition();

    public static void main(String[] args) throws InterruptedException  {
        ConTest2 test = new ConTest2();
        Producer producer = test.new Producer();
        Consumer consumer = test.new Consumer();
        producer.start();
        consumer.start();
        Thread.sleep(0);
        producer.interrupt();
        consumer.interrupt();
    }

    class Consumer extends Thread{
        @Override
        public void run() {
            consume();
        }
        volatile boolean flag=true;
        private void consume() {
            while(flag){
                lock.lock();
                try {
                    while(queue.isEmpty()){
                        try {
                            System.out.println("队列空,等待数据");
                            notEmpty.await();
                        } catch (InterruptedException e) {
                            flag =false;
                        }
                    }
                    queue.poll();                //每次移走队首元素
                    notFull.signal();
                    System.out.println("从队列取走一个元素,队列剩余"+queue.size()+"个元素");
                } finally{
                    lock.unlock();
                }
            }
        }
    }

    class Producer extends Thread{
        @Override
        public void run() {
            produce();
        }
        volatile boolean flag=true;
        private void produce() {
            while(flag){
                lock.lock();
                try {
                    while(queue.size() == queueSize){
                        try {
                            System.out.println("队列满,等待有空余空间");
                            notFull.await();
                        } catch (InterruptedException e) {

                            flag =false;
                        }
                    }
                    queue.offer(1);        //每次插入一个元素
                    notEmpty.signal();
                    System.out.println("向队列取中插入一个元素,队列剩余空间:"+(queueSize-queue.size()));
                } finally{
                    lock.unlock();
                }
            }
        }
    }
}

运行结果如下:

二、Condition接口     

condition可以通俗的理解为条件队列。当一个线程在调用了await方法以后,直到线程等待的某个条件为真的时候才会被唤醒。这种方式为线程提供了更加简单的等待/通知模式。Condition必须要配合锁一起使用,因为对共享状态变量的访问发生在多线程环境下。一个Condition的实例必须与一个Lock绑定,因此Condition一般都是作为Lock的内部实现。

await() :造成当前线程在接到信号或被中断之前一直处于等待状态。

await(long time, TimeUnit unit) :造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态

awaitNanos(long nanosTimeout) :造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。

返回值表示剩余时间,如果在nanosTimesout之前唤醒,那么返回值 = nanosTimeout - 消耗时间,如果返回值 <= 0 ,则可以认定它已经超时了。

awaitUninterruptibly() :造成当前线程在接到信号之前一直处于等待状态。【注意:该方法对中断不敏感】。

awaitUntil(Date deadline) :造成当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态。如果没有到指定时间就被通知,则返回true,否则表示到了指定时间,返回返回false。

signal() :唤醒一个等待线程。该线程从等待方法返回前必须获得与Condition相关的锁。

signal()All :唤醒所有等待线程。能够从等待方法返回的线程必须获得与Condition相关的锁。

三、condition实现分析

  • Condition接口包含了多种await方式和两个通知方法
  • ConditionObject实现了Condition接口,是AbstractQueuedSynchronizer的内部类(因为Condition的操作都需要获取想关联的锁)
  • Reentrantlock的newCondition方法返回与某个lock实例相关的Condition对象
public abstract class AbstractQueuedLongSynchronizer
    extends AbstractOwnableSynchronizer
    implements java.io.Serializable {

结合上面的类图,我们看到condition实现是依赖于aqs,而aqs是个抽象类。里面定义了同步器的基本框架,实现了基本的结构功能。只留有状态条件的维护由具体同步器根据具体场景来定制,如常见的 ReentrantLock 、 RetrantReadWriteLock和CountDownLatch 等等,

3.1、等待队列

Condition是AQS的内部类。每个Condition对象都包含一个队列(等待队列)。等待队列是一个FIFO的队列,在队列中的每个节点都包含了一个线程引用,该线程就是在Condition对象上等待的线程,如果一个线程调用了Condition.await()方法,那么该线程将会释放锁、构造成节点加入等待队列并进入等待状态。AQS有一个同步队列和多个等待队列,节点都是Node。等待队列的基本结构如下所示。

等待分为首节点和尾节点。当一个线程调用Condition.await()方法,将会以当前线程构造节点,并将节点从尾部加入等待队列。新增节点就是将尾部节点指向新增的节点。节点引用更新本来就是在获取锁以后的操作,所以不需要CAS保证。同时也是线程安全的操作。

public class ConditionObject implements Condition, java.io.Serializable {
    private static final long serialVersionUID = 1173984872572414699L;
    /** First node of condition queue. */
    private transient Node firstWaiter;
    /** Last node of condition queue. */
    private transient Node lastWaiter;

3.2、等待

 当线程调用了Condition的await()方法以后。线程就作为队列中的一个节点被加入到等待队列中去了。同时会释放锁的拥有。当从await方法返回的时候。当前线程一定会获取condition相关联的锁。

如果从队列(同步队列和等待队列)的角度去看await()方法,当调用await()方法时,相当于同步队列的首节点(获取锁的节点)移动到Condition的等待队列中。

调用该方法的线程成功的获取锁的线程,也就是同步队列的首节点,该方法会将当前线程构造成节点并加入到等待队列中,然后释放同步状态,唤醒同步队列中的后继节点,然后当前线程会进入等待状态。

当等待队列中的节点被唤醒的时候,则唤醒节点的线程开始尝试获取同步状态。如果不是通过 其他线程调用Condition.signal()方法唤醒,而是对等待线程进行中断,则会抛出InterruptedException异常信息。

   

我们看一下这个await的方法,它是AQS的方法,

public final void await() throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    Node node = addConditionWaiter(); //将当前线程包装下后,
    //添加到Condition自己维护的一个链表中。
    int savedState = fullyRelease(node);//释放当前线程占有的锁,从demo中看到,
    //调用await前,当前线程是占有锁的
    int interruptMode = 0;
    while (!isOnSyncQueue(node)) {
        //释放完毕后,遍历AQS的队列,看当前节点是否在队列中,
        //不在 说明它还没有竞争锁的资格,所以继续将自己沉睡。
        //直到它被加入到队列中,聪明的你可能猜到了,
        //没有错,在singal的时候加入不就可以了?
    LockSupport.park(this);
    if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
        break;
    }
//被唤醒后,重新开始正式竞争锁,同样,如果竞争不到还是会将自己沉睡,等待唤醒重新开始竞争。
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
    interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
    unlinkCancelledWaiters();
if (interruptMode != 0)
    reportInterruptAfterWait(interruptMode);
}

结合代码去看,同步队列的首节点 并不会直接加入等待队列,而是通过addConditionWaiter把当前线程构造成一个新节点并加入到等待队列中。

/**
    * Adds a new waiter to wait queue.
    * @return its new wait node
    */
private Node addConditionWaiter() {
    Node t = lastWaiter;
    // If lastWaiter is cancelled, clean out.
    if (t != null && t.waitStatus != Node.CONDITION) {
        unlinkCancelledWaiters();
        t = lastWaiter;
    }
    Node node = new Node(Thread.currentThread(), Node.CONDITION);
    if (t == null)
        firstWaiter = node;
    else
        t.nextWaiter = node;
    lastWaiter = node;
    return node;
}

3.3、通知

 调用Condition的signal()方法,将会唤醒在等待队列中等待最长时间的节点(条件队列里的首节点),在唤醒节点前,会将节点移到同步队列中。当前线程加入到等待队列中如图所示:

回到上面的demo,锁被释放后,线程Consumer开始沉睡,这个时候线程因为线程Consumer沉睡时,会唤醒AQS队列中的头结点,所所以线程Producer会开始竞争锁,并获取到,执行完后线程Producer会调用signal方法,“发出”signal信号,signal方法如下:

public final void signal() {
 if (!isHeldExclusively())
    throw new IllegalMonitorStateException();
 Node first = firstWaiter; //firstWaiter为condition自己维护的一个链表的头结点,
 //取出第一个节点后开始唤醒操作
 if (first != null)
    doSignal(first);
}

在调用signal()方法之前必须先判断是否获取到了锁(isHeldExclusively方法)。接着获取等待队列的首节点,将其移动到同步队列并且利用LockSupport唤醒节点中的线程。

被唤醒的线程将从await方法中的while循环中退出(  while (!isOnSyncQueue(node)) { 方法返回true,节点已经在同步队列中)。随后调用同步器的acquireQueued()方法加入到同步状态的竞争当中去。成功获取到竞争的线程从先前调用await方法返回,此时该线程已经成功获取了锁。

*********************************************

AQS的同步队列与Condition的等待队列,两个队列的作用是不同,事实上,每个线程也仅仅会同时存在以上两个队列中的一个,流程是这样的:

注意:

1.线程producer调用signal方法,这个时候Condition的等待队列中只有线程Consumer一个节点,于是它被取出来,并被加入到AQS的等待队列中。  注意,这个时候,线程Consumer 并没有被唤醒。

2.Sync是AQS的抽象子类,实现可重入和互斥的大部分功能。在Sync的子类中有FairSync和NonfairSync两种代表公平锁策略和非公平锁策略。Sync lock方法留给子类去实现,NonfairSync的实现:

final void lock() {
    if (compareAndSetState(0, 1))
        setExclusiveOwnerThread(Thread.currentThread());
    else
        acquire(1);
}

其中如果一开始获取锁成功,是直接设置当前线程。

否则执行acquire(1),也就是进入aqs等待队列。这里不展开细节。

可以这样理解,整个协作过程是靠结点在AQS的等待队列和Condition的等待队列中来回移动实现的,每个队列的意义不同,Condition作为一个条件类,很好的自己维护了一个等待信号的队列,并在适时的时候将结点加入到AQS的等待队列中来实现的唤醒操作

以上就是解析java中的condition的详细内容,更多关于java condition的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java并发编程之Condition源码分析(推荐)

    Condition介绍 上篇文章讲了ReentrantLock的加锁和释放锁的使用,这篇文章是对ReentrantLock的补充.ReentrantLock#newCondition()可以创建Condition,在ReentrantLock加锁过程中可以利用Condition阻塞当前线程并临时释放锁,待另外线程获取到锁并在逻辑后通知阻塞线程"激活".Condition常用在基于异步通信的同步机制实现中,比如dubbo中的请求和获取应答结果的实现. 常用方法 Condition中主要的

  • Java多线程编程中使用Condition类操作锁的方法详解

    Condition的作用是对锁进行更精确的控制.Condition中的await()方法相当于Object的wait()方法,Condition中的signal()方法相当于Object的notify()方法,Condition中的signalAll()相当于Object的notifyAll()方法.不同的是,Object中的wait(),notify(),notifyAll()方法是和"同步锁"(synchronized关键字)捆绑使用的:而Condition是需要与"互斥

  • Java并发之条件阻塞Condition的应用代码示例

    本文研究的主要是Java并发之条件阻塞Condition的应用示例代码,具体如下. Condition将Object监视器方法(wait.notify 和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意Lock实现组合使用,为每个对象提供多个等待 set(wait-set).其中,Lock 替代了synchronized方法和语句的使用,Condition替代了Object监视器方法的使用. 1. Condition的基本使用 由于Condition可以用来替代wait.no

  • Java中使用Preconditions来检查传入参数介绍

    Preconditions是Guava中的一个类库,用于检查传入参数,一个常见用法如下: boolean findElement(List<String> elements, String desiredElement) { checkNotNull(elements); // ... } 用法简单明了,就是检查参数elements是不是null,如果是null则扔出NullPointerException.当然Preconditions类里还有其它方法,可能满足几乎所有的传入参数的检查.Pr

  • Java多线程中ReentrantLock与Condition详解

    一.ReentrantLock类 1.1什么是reentrantlock java.util.concurrent.lock中的Lock框架是锁定的一个抽象,它允许把锁定的实现作为Java类,而不是作为语言的特性来实现.这就为Lock的多种实现留下了空间,各种实现可能有不同的调度算法.性能特性或者锁定语义.ReentrantLock类实现了Lock,它拥有与synchronized相同的并发性和内存语义,但是添加了类似锁投票.定时锁等候和可中断锁等候的一些特性.此外,它还提供了在激烈争用情况下更

  • Java编程中实现Condition控制线程通信

    java中控制线程通信的方法 1.传统的方式:利用synchronized关键字来保证同步,结合wait(),notify(),notifyAll()控制线程通信.不灵活. 2.利用Condition控制线程通信,灵活. 3.利用管道pipe进行线程通信,不推荐 4.利用BlockingQueue控制线程通信 本文就讲解利用Condition控制线程通信,非常灵活的方式. Condition类是用来保持Lock对象的协调调用. 对Lock不了解的可以参考:Java线程同步Lock同步锁代码示例

  • Java concurrency之Condition条件_动力节点Java学院整理

    Condition介绍 Condition的作用是对锁进行更精确的控制.Condition中的await()方法相当于Object的wait()方法,Condition中的signal()方法相当于Object的notify()方法,Condition中的signalAll()相当于Object的notifyAll()方法.不同的是,Object中的wait(),notify(),notifyAll()方法是和"同步锁"(synchronized关键字)捆绑使用的:而Condition

  • 解析java中的condition

    一.condition 介绍及demo Condition是在java 1.5中才出现的,它用来替代传统的Object的wait().notify()实现线程间的协作,相比使用Object的wait().notify(),使用Condition的await().signal()这种方式实现线程间协作更加安全和高效.因此通常来说比较推荐使用Condition,阻塞队列实际上是使用了Condition来模拟线程间协作. Condition是个接口,基本的方法就是await()和signal()方法:

  • 实例解析Java中的构造器初始化

    1.初始化顺序 当Java创建一个对象时,系统先为该对象的所有实例属性分配内存(前提是该类已经被加载过了),接着程序开始对这些实例属性执行初始化,其初始化顺序是:先执行初始化块或声明属性时制定的初始值,再执行构造器里制定的初始值. 在类的内部,变量定义的先后顺序决定了初始化的顺序,即时变量散布于方法定义之间,它们仍就会在任何方法(包括构造器)被调用之前得到初始化. class Window { Window(int maker) { System.out.println("Window(&quo

  • 深入解析Java中反射中的invoke()方法

    先讲一下java中的反射: 反射就是将类别的各个组成部分进行剖析,可以得到每个组成部分,就可以对每一部分进行操作 反射机制应用场景:逆向代码.动态生成类框架等,使用反射机制能够大大的增强程序的扩展性. 反射的基本步骤:首先获得Class对象,然后实例化对象,获得类的属性.方法或者构造函数,最后访问属性.调用方法.调用构造函数创建对象.而invoke()方法就是用来执行指定对象的方法. 在比较复杂的程序或框架中来使用反射技术,可以简化代码提高程序的复用性. 讲的是Method类的invoke()方

  • 解析Java中的static关键字

    一.static关键字使用场景 static关键字主要有以下5个使用场景: 1.1.静态变量 把一个变量声明为静态变量通常基于以下三个目的: 作为共享变量使用 减少对象的创建 保留唯一副本 第一种比较容易理解,由于static变量在内存中只会存在一个副本,所以其可以作为共享变量使用,比如要定义一个全局配置.进行全局计数.如: public class CarConstants { // 全局配置,一般全局配置会和final一起配合使用, 作为共享变量 public static final in

  • 一文解析Java中的方法重写

    目录 1.含义 2.为什么要使用方法重写 3.如何使用方法重写 3.1 基本语法 3.2 具体分析 3.3 方法重写的一些小技巧 1.含义 子类继承父类后,可以在子类中书写一个与父类同名同参的方法,从而实现对父类中同名同参数的方法的覆盖,我们把这一过程叫做方法的重写(override) 2.为什么要使用方法重写 2.1 当父类的方法满足不了子类的需求的时候,需要在子类中对该方法进行重写 2.2 题目与分析 例如存在一个父类Peple,子类Chinese,父类中有一个say()方法,输出人在说话,

  • 深入解析Java中的Class Loader类加载器

    类加载的过程 类加载器的主要工作就是把类文件加载到JVM中.如下图所示,其过程分为三步: 1.加载:定位要加载的类文件,并将其字节流装载到JVM中: 2.链接:给要加载的类分配最基本的内存结构保存其信息,比如属性,方法以及引用的类.在该阶段,该类还处于不可用状态: (1)验证:对加载的字节流进行验证,比如格式上的,安全方面的: (2)内存分配:为该类准备内存空间来表示其属性,方法以及引用的类: (3)解析:加载该类所引用的其它类,比如父类,实现的接口等. 3.初始化:对类变量进行赋值. 类加载器

  • 深入解析Java中的Classloader的运行机制

    java有两种类型的classload,一种是user-defined的,一种是jvm内置的bootstrap class loader,所有user-defined的class loader都是java.lang.ClassLoader的子类. 而jvm内置的class loader有3种,分别是 Bootstrap ClassLoader, Extension ClassLoader(即ExtClassLoader),System ClassLoader(即AppClassLoader).

  • 解析Java中的定时器及使用定时器制作弹弹球游戏的示例

    在我们编程过程中如果需要执行一些简单的定时任务,无须做复杂的控制,我们可以考虑使用JDK中的Timer定时任务来实现.下面LZ就其原理.实例以及Timer缺陷三个方面来解析java Timer定时器. 一.简介       在java中一个完整定时任务需要由Timer.TimerTask两个类来配合完成. API中是这样定义他们的,Timer:一种工具,线程用其安排以后在后台线程中执行的任务.可安排任务执行一次,或者定期重复执行.由TimerTask:Timer 安排为一次执行或重复执行的任务.

  • 深入解析Java中的编码转换以及编码和解码操作

    一.Java编码转换过程  我们总是用一个java类文件和用户进行最直接的交互(输入.输出),这些交互内容包含的文字可能会包含中文.无论这些java类是与数据库交互,还是与前端页面交互,他们的生命周期总是这样的:  (1).程序员在操作系统上通过编辑器编写程序代码并且以.java的格式保存操作系统中,这些文件我们称之为源文件.  (2).通过JDK中的javac.exe编译这些源文件形成.class类.  (3).直接运行这些类或者部署在WEB容器中运行,得到输出结果.  这些过程是从宏观上面来

  • 全面解析Java中的HashMap类

    HashMap 和 HashSet 是 Java Collection Framework 的两个重要成员,其中 HashMap 是 Map 接口的常用实现类,HashSet 是 Set 接口的常用实现类.虽然 HashMap 和 HashSet 实现的接口规范不同,但它们底层的 Hash 存储机制完全一样,甚至 HashSet 本身就采用 HashMap 来实现的. 实际上,HashSet 和 HashMap 之间有很多相似之处,对于 HashSet 而言,系统采用 Hash 算法决定集合元素

随机推荐