Tensorflow深度学习使用CNN分类英文文本

目录
  • 前言
  • 源码与数据
    • 源码
    • 数据
    • train.py 源码及分析
    • data_helpers.py 源码及分析
    • text_cnn.py 源码及分析

前言

Github源码地址

本文同时也是学习唐宇迪老师深度学习课程的一些理解与记录。

文中代码是实现在TensorFlow下使用卷积神经网络(CNN)做英文文本的分类任务(本次是垃圾邮件的二分类任务),当然垃圾邮件分类是一种应用环境,模型方法也可以推广到其它应用场景,如电商商品好评差评分类、正负面新闻等。

源码与数据

源码

- data_helpers.py

- train.py

- text_cnn.py

- eval.py(Save the evaluations to a csv, in case the user wants to inspect,analyze, or otherwise use the classifications generated by the neural net)

数据

- rt-polarity.neg

- rt-polarity.pos

train.py 源码及分析

import tensorflow as tf
import numpy as np
import os
import time
import datetime
import data_helpers
from text_cnn import TextCNN
from tensorflow.contrib import learn
# Parameters
# ==================================================
# Data loading params
# 语料文件路径定义
tf.flags.DEFINE_float("dev_sample_percentage", .1, "Percentage of the training data to use for validation")
tf.flags.DEFINE_string("positive_data_file", "./data/rt-polaritydata/rt-polarity.pos", "Data source for the positive data.")
tf.flags.DEFINE_string("negative_data_file", "./data/rt-polaritydata/rt-polarity.neg", "Data source for the negative data.")

# Model Hyperparameters
# 定义网络超参数
tf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)")

# Training parameters
# 训练参数
tf.flags.DEFINE_integer("batch_size", 32, "Batch Size (default: 32)")
tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)") # 总训练次数
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)") # 每训练100次测试一下
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)") # 保存一次模型
tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") # 加上一个布尔类型的参数,要不要自动分配
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") # 加上一个布尔类型的参数,要不要打印日志

# 打印一下相关初始参数
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
    print("{}={}".format(attr.upper(), value))
print("")

# Data Preparation
# ==================================================
# Load data
print("Loading data...")
x_text, y = data_helpers.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)
# Build vocabulary
max_document_length = max([len(x.split(" ")) for x in x_text]) # 计算最长邮件
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length) # tensorflow提供的工具,将数据填充为最大长度,默认0填充
x = np.array(list(vocab_processor.fit_transform(x_text)))

# Randomly shuffle data
# 数据洗牌
np.random.seed(10)
# np.arange生成随机序列
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]

# 将数据按训练train和测试dev分块
# Split train/test set
# TODO: This is very crude, should use cross-validation
dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))
x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]
y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]
print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev))) # 打印切分的比例
# Training
# ==================================================
with tf.Graph().as_default():
    session_conf = tf.ConfigProto(
        allow_soft_placement=FLAGS.allow_soft_placement,
        log_device_placement=FLAGS.log_device_placement)
    sess = tf.Session(config=session_conf)
    with sess.as_default():
        # 卷积池化网络导入
        cnn = TextCNN(
            sequence_length=x_train.shape[1],
            num_classes=y_train.shape[1], # 分几类
            vocab_size=len(vocab_processor.vocabulary_),
            embedding_size=FLAGS.embedding_dim,
            filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))), # 上面定义的filter_sizes拿过来,"3,4,5"按","分割
            num_filters=FLAGS.num_filters, # 一共有几个filter
            l2_reg_lambda=FLAGS.l2_reg_lambda) # l2正则化项

        # Define Training procedure
        global_step = tf.Variable(0, name="global_step", trainable=False)
        optimizer = tf.train.AdamOptimizer(1e-3) # 定义优化器
        grads_and_vars = optimizer.compute_gradients(cnn.loss)
        train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)

        # Keep track of gradient values and sparsity (optional)
        grad_summaries = []
        for g, v in grads_and_vars:
            if g is not None:
                grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
                sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                grad_summaries.append(grad_hist_summary)
                grad_summaries.append(sparsity_summary)
        grad_summaries_merged = tf.summary.merge(grad_summaries)

        # Output directory for models and summaries
        timestamp = str(int(time.time()))
        out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
        print("Writing to {}\n".format(out_dir))

        # Summaries for loss and accuracy
        # 损失函数和准确率的参数保存
        loss_summary = tf.summary.scalar("loss", cnn.loss)
        acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)

        # Train Summaries
        # 训练数据保存
        train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
        train_summary_dir = os.path.join(out_dir, "summaries", "train")
        train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

        # Dev summaries
        # 测试数据保存
        dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
        dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
        dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)

        # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
        checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
        checkpoint_prefix = os.path.join(checkpoint_dir, "model")
        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)

        saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) # 前面定义好参数num_checkpoints

        # Write vocabulary
        vocab_processor.save(os.path.join(out_dir, "vocab"))

        # Initialize all variables
        sess.run(tf.global_variables_initializer()) # 初始化所有变量

        # 定义训练函数
        def train_step(x_batch, y_batch):
            """
            A single training step
            """
            feed_dict = {
              cnn.input_x: x_batch,
              cnn.input_y: y_batch,
              cnn.dropout_keep_prob: FLAGS.dropout_keep_prob # 参数在前面有定义
            }
            _, step, summaries, loss, accuracy = sess.run(
                [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy], feed_dict)
            time_str = datetime.datetime.now().isoformat() # 取当前时间,python的函数
            print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
            train_summary_writer.add_summary(summaries, step)

        # 定义测试函数
        def dev_step(x_batch, y_batch, writer=None):
            """
            Evaluates model on a dev set
            """
            feed_dict = {
              cnn.input_x: x_batch,
              cnn.input_y: y_batch,
              cnn.dropout_keep_prob: 1.0 # 神经元全部保留
            }
            step, summaries, loss, accuracy = sess.run(
                [global_step, dev_summary_op, cnn.loss, cnn.accuracy], feed_dict)
            time_str = datetime.datetime.now().isoformat()
            print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
            if writer:
                writer.add_summary(summaries, step)

        # Generate batches
        batches = data_helpers.batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
        # Training loop. For each batch...
        # 训练部分
        for batch in batches:
            x_batch, y_batch = zip(*batch) # 按batch把数据拿进来
            train_step(x_batch, y_batch)
            current_step = tf.train.global_step(sess, global_step) # 将Session和global_step值传进来
            if current_step % FLAGS.evaluate_every == 0: # 每FLAGS.evaluate_every次每100执行一次测试
                print("\nEvaluation:")
                dev_step(x_dev, y_dev, writer=dev_summary_writer)
                print("")
            if current_step % FLAGS.checkpoint_every == 0: # 每checkpoint_every次执行一次保存模型
                path = saver.save(sess, './', global_step=current_step) # 定义模型保存路径
                print("Saved model checkpoint to {}\n".format(path))

data_helpers.py 源码及分析

import numpy as np
import re
import itertools
from collections import Counter

def clean_str(string):
    """
    Tokenization/string cleaning for all datasets except for SST.
    Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
    """
    # 清理数据替换掉无词义的符号
    string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
    string = re.sub(r"\'s", " \'s", string)
    string = re.sub(r"\'ve", " \'ve", string)
    string = re.sub(r"n\'t", " n\'t", string)
    string = re.sub(r"\'re", " \'re", string)
    string = re.sub(r"\'d", " \'d", string)
    string = re.sub(r"\'ll", " \'ll", string)
    string = re.sub(r",", " , ", string)
    string = re.sub(r"!", " ! ", string)
    string = re.sub(r"\(", " \( ", string)
    string = re.sub(r"\)", " \) ", string)
    string = re.sub(r"\?", " \? ", string)
    string = re.sub(r"\s{2,}", " ", string)
    return string.strip().lower()
def load_data_and_labels(positive_data_file, negative_data_file):
    """
    Loads MR polarity data from files, splits the data into words and generates labels.
    Returns split sentences and labels.
    """
    # Load data from files
    positive = open(positive_data_file, "rb").read().decode('utf-8')
    negative = open(negative_data_file, "rb").read().decode('utf-8')

    # 按回车分割样本
    positive_examples = positive.split('\n')[:-1]
    negative_examples = negative.split('\n')[:-1]

    # 去空格
    positive_examples = [s.strip() for s in positive_examples]
    negative_examples = [s.strip() for s in negative_examples]

    #positive_examples = list(open(positive_data_file, "rb").read().decode('utf-8'))
    #positive_examples = [s.strip() for s in positive_examples]
    #negative_examples = list(open(negative_data_file, "rb").read().decode('utf-8'))
    #negative_examples = [s.strip() for s in negative_examples]
    # Split by words
    x_text = positive_examples + negative_examples
    x_text = [clean_str(sent) for sent in x_text] # 字符过滤,实现函数见clean_str()
    # Generate labels
    positive_labels = [[0, 1] for _ in positive_examples]
    negative_labels = [[1, 0] for _ in negative_examples]
    y = np.concatenate([positive_labels, negative_labels], 0) # 将两种label连在一起
    return [x_text, y]

# 创建batch迭代模块
def batch_iter(data, batch_size, num_epochs, shuffle=True): # shuffle=True洗牌
    """
    Generates a batch iterator for a dataset.
    """
    # 每次只输出shuffled_data[start_index:end_index]这么多
    data = np.array(data)
    data_size = len(data)
    num_batches_per_epoch = int((len(data)-1)/batch_size) + 1 # 每一个epoch有多少个batch_size
    for epoch in range(num_epochs):
        # Shuffle the data at each epoch
        if shuffle:
            shuffle_indices = np.random.permutation(np.arange(data_size)) # 洗牌
            shuffled_data = data[shuffle_indices]
        else:
            shuffled_data = data
        for batch_num in range(num_batches_per_epoch):
            start_index = batch_num * batch_size # 当前batch的索引开始
            end_index = min((batch_num + 1) * batch_size, data_size) # 判断下一个batch是不是超过最后一个数据了
            yield shuffled_data[start_index:end_index]

text_cnn.py 源码及分析

import tensorflow as tf
import numpy as np
# 定义CNN网络实现的类
class TextCNN(object):
    """
    A CNN for text classification.
    Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
    """
    def __init__(self, sequence_length, num_classes, vocab_size,
                 embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0): # 把train.py中TextCNN里定义的参数传进来

        # Placeholders for input, output and dropout
        self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x") # input_x输入语料,待训练的内容,维度是sequence_length,"N个词构成的N维向量"
        self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") # input_y输入语料,待训练的内容标签,维度是num_classes,"正面 || 负面"
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") # dropout_keep_prob dropout参数,防止过拟合,训练时用
        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0) # 先不用,写0
        # Embedding layer
        # 指定运算结构的运行位置在cpu非gpu,因为"embedding"无法运行在gpu
        # 通过tf.name_scope指定"embedding"
        with tf.device('/cpu:0'), tf.name_scope("embedding"): # 指定cpu
            self.W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0), name="W") # 定义W并初始化
            self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
            self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1) # 加一个维度,转换为4维的格式
        # Create a convolution + maxpool layer for each filter size
        pooled_outputs = []
        # filter_sizes卷积核尺寸,枚举后遍历
        for i, filter_size in enumerate(filter_sizes):
            with tf.name_scope("conv-maxpool-%s" % filter_size):
                # Convolution Layer
                filter_shape = [filter_size, embedding_size, 1, num_filters] # 4个参数分别为filter_size高h,embedding_size宽w,channel为1,filter个数
                W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") # W进行高斯初始化
                b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b") # b给初始化为一个常量
                conv = tf.nn.conv2d(
                    self.embedded_chars_expanded,
                    W,
                    strides=[1, 1, 1, 1],
                    padding="VALID", # 这里不需要padding
                    name="conv")
                # Apply nonlinearity 激活函数
                # 可以理解为,正面或者负面评价有一些标志词汇,这些词汇概率被增强,即一旦出现这些词汇,倾向性分类进正或负面评价,
                # 该激励函数可加快学习进度,增加稀疏性,因为让确定的事情更确定,噪声的影响就降到了最低。
                h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
                # Maxpooling over the outputs
                # 池化
                pooled = tf.nn.max_pool(
                    h,
                    ksize=[1, sequence_length - filter_size + 1, 1, 1], # (h-filter+2padding)/strides+1=h-f+1
                    strides=[1, 1, 1, 1],
                    padding='VALID', # 这里不需要padding
                    name="pool")
                pooled_outputs.append(pooled)

        # Combine all the pooled features
        num_filters_total = num_filters * len(filter_sizes)
        self.h_pool = tf.concat(3, pooled_outputs)
        self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total]) # 扁平化数据,跟全连接层相连
        # Add dropout
        # drop层,防止过拟合,参数为dropout_keep_prob
        # 过拟合的本质是采样失真,噪声权重影响了判断,如果采样足够多,足够充分,噪声的影响可以被量化到趋近事实,也就无从过拟合。
        # 即数据越大,drop和正则化就越不需要。
        with tf.name_scope("dropout"):
            self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)

        # Final (unnormalized) scores and predictions
        # 输出层
        with tf.name_scope("output"):
            W = tf.get_variable(
                "W",
                shape=[num_filters_total, num_classes], #前面连扁平化后的池化操作
                initializer=tf.contrib.layers.xavier_initializer()) # 定义初始化方式
            b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
            # 损失函数导入
            l2_loss += tf.nn.l2_loss(W)
            l2_loss += tf.nn.l2_loss(b)
            # xw+b
            self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores") # 得分函数
            self.predictions = tf.argmax(self.scores, 1, name="predictions") # 预测结果

        # CalculateMean cross-entropy loss
        with tf.name_scope("loss"):
            # loss,交叉熵损失函数
            losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
            self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss

        # Accuracy
        with tf.name_scope("accuracy"):
            # 准确率,求和计算算数平均值
            correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")

以上就是Tensorflow深度学习CNN实现英文文本分类的详细内容,更多关于Tensorflow实现CNN分类英文文本的资料请关注我们其它相关文章!

(0)

相关推荐

  • TensorFlow神经网络创建多层感知机MNIST数据集

    前面使用TensorFlow实现一个完整的Softmax Regression,并在MNIST数据及上取得了约92%的正确率. 前文传送门: TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集 现在建含一个隐层的神经网络模型(多层感知机). import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True)

  • TensorFlow深度学习另一种程序风格实现卷积神经网络

    import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print("MNIST ready") n_input = 784 # 28*28的灰度图,像素个数784 n_output = 10 # 是10分类问题 # 权重项 weights = { # conv1,参数[3, 3, 1, 32]分别指定了fi

  • TensorFlow卷积神经网络MNIST数据集实现示例

    这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集.网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连接层1–全连接层2(输出层),这是一个简单但非常有代表性的卷积神经网络. import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print("MNIST ready&q

  • 用tensorflow搭建CNN的方法

    CNN(Convolutional Neural Networks) 卷积神经网络简单讲就是把一个图片的数据传递给CNN,原涂层是由RGB组成,然后CNN把它的厚度加厚,长宽变小,每做一层都这样被拉长,最后形成一个分类器 在 CNN 中有几个重要的概念: stride padding pooling stride,就是每跨多少步抽取信息.每一块抽取一部分信息,长宽就缩减,但是厚度增加.抽取的各个小块儿,再把它们合并起来,就变成一个压缩后的立方体. padding,抽取的方式有两种,一种是抽取后的

  • tensorflow学习教程之文本分类详析

    前言 这几天caffe2发布了,支持移动端,我理解是类似单片机的物联网吧应该不是手机之类的,试想iphone7跑CNN,画面太美~ 作为一个刚入坑的,甚至还没入坑的人,咱们还是老实研究下tensorflow吧,虽然它没有caffe好上手.tensorflow的特点我就不介绍了: 基于Python,写的很快并且具有可读性. 支持CPU和GPU,在多GPU系统上的运行更为顺畅. 代码编译效率较高. 社区发展的非常迅速并且活跃. 能够生成显示网络拓扑结构和性能的可视化图. tensorflow(tf)

  • TensorFlow实现简单的CNN的方法

    这里,我们将采用Tensor Flow内建函数实现简单的CNN,并用MNIST数据集进行测试 第1步:加载相应的库并创建计算图会话 import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets import matplotlib.pyplot as plt #创建计算图会话 sess = tf.Session()

  • Tensorflow深度学习使用CNN分类英文文本

    目录 前言 源码与数据 源码 数据 train.py 源码及分析 data_helpers.py 源码及分析 text_cnn.py 源码及分析 前言 Github源码地址 本文同时也是学习唐宇迪老师深度学习课程的一些理解与记录. 文中代码是实现在TensorFlow下使用卷积神经网络(CNN)做英文文本的分类任务(本次是垃圾邮件的二分类任务),当然垃圾邮件分类是一种应用环境,模型方法也可以推广到其它应用场景,如电商商品好评差评分类.正负面新闻等. 源码与数据 源码 - data_helpers

  • python使用tensorflow深度学习识别验证码

    本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下: 除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码. 此篇代码大部分是转载的,只改了很少地方. 代码是运行在linux环境,tessorflow没有支持windows的python 2.7. gen_captcha.py代码. #coding=utf-8 from captcha.image import ImageCaptcha # pi

  • TensorFlow深度学习之卷积神经网络CNN

    一.卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此

  • TensorFlow实现卷积神经网络CNN

    一.卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因

  • 机器深度学习二分类电影的情感问题

    二分类问题可能是应用最广泛的机器学习问题.今天我们将学习根据电影评论的文字内容将其划分为正面或负面. 一.数据集来源 我们使用的是IMDB数据集,它包含来自互联网电影数据库(IMDB)的50000条严重两极分化的评论.为了避免模型过拟合只记住训练数据,我们将数据集分为用于训练的25000条评论与用于测试的25000条评论,训练集和测试集都包含50%的正面评论和50%的负面评论. 与MNIST数据集一样,IMDB数据集也内置于Keras库.它已经过预处理:评论(单词序列)已经被转换为整数序列,其中

  • 深度学习tensorflow基础mnist

    软件架构 mnist数据集的识别使用了两个非常小的网络来实现,第一个是最简单的全连接网络,第二个是卷积网络,mnist数据集是入门数据集,所以不需要进行图像增强,或者用生成器读入内存,直接使用简单的fit()命令就可以一次性训练 安装教程 使用到的主要第三方库有tensorflow1.x,基于TensorFlow的Keras,基础的库包括numpy,matplotlib 安装方式也很简答,例如:pip install numpy -i https://pypi.tuna.tsinghua.edu

  • python深度学习TensorFlow神经网络模型的保存和读取

    目录 之前的笔记里实现了softmax回归分类.简单的含有一个隐层的神经网络.卷积神经网络等等,但是这些代码在训练完成之后就直接退出了,并没有将训练得到的模型保存下来方便下次直接使用.为了让训练结果可以复用,需要将训练好的神经网络模型持久化,这就是这篇笔记里要写的东西. TensorFlow提供了一个非常简单的API,即tf.train.Saver类来保存和还原一个神经网络模型. 下面代码给出了保存TensorFlow模型的方法: import tensorflow as tf # 声明两个变量

  • python深度学习tensorflow实例数据下载与读取

    目录 一.mnist数据 二.CSV数据 三.cifar10数据 一.mnist数据 深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集. tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们直接调用就可以了,代码如下: import tensorflow.examples.tutorials.mnist.input_data mnist = input_data.read_data_sets("MNIST_data/&q

  • 深度学习Tensorflow 2.4 完成迁移学习和模型微调

    目录 前言 实现过程 1. 获取数据 2. 数据扩充与数据缩放 3. 迁移学习 4. 微调 5. 预测 前言 本文使用 cpu 的 tensorflow 2.4 完成迁移学习和模型微调,并使用训练好的模型完成猫狗图片分类任务. 预训练模型在 NLP 中最常见的可能就是 BERT 了,在 CV 中我们此次用到了 MobileNetV2 ,它也是一个轻量化预训练模型,它已经经过大量的图片分类任务的训练,里面保存了一个可以通用的去捕获图片特征的模型网络结构,其可以通用地提取出图片的有意义特征.这些特征

随机推荐