R语言实现用cbind合并两列数据
我有两个数据文件,分别只有一列,这两列数据行数一行,我想把这两列合并到一个数据文件中,方便使用。
我的两个数据文件分别是1.txt,2.txt,保存后的文件名是3.txt。
// 代码如下 gow1<-read.table("1.txt",header = FALSE) gow2<-read.table("2.txt",header = FALSE) View(gow1) View(gow2) gow<-cbind(gow1,gow2) View(gow) write.table(g3,file = "3.txt",row.names=FALSE)
结果如下图所示
gow
gow2
gow
3.txt数据
//row.names=FALSE 表示不带行号 write.table(g3,file = "3.txt",row.names=FALSE)
3.txt数据
//带行号保存 write.table(g3,file = "3.txt")
补充:关于R语言中的merge和cbind功能的用法
如上图所示merge功能实际上是执行age的求交集运算,然后再合并两个数据框,而cbind功能则是直接合并两个数据框,注意两个表的行数是要相同的
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。
相关推荐
-
R语言数据读取以及数据保存方式
一.R语言读取文本文件: 1.文件目录操作: getwd() : 返回当前工作目录 setwd("d:/data") 更改工作目录 2.常用的读取指令read read.table() : 读取文本文件 read.csv(): 读取csv文件 如果出现缺失值,read.table()会报错,read.csv()读取时会自动在缺失的位置填补NA 3.灵活的读取指令 scan() : 4.读取固定宽度格式的文件: read.fwf() 文本文档中最后一行的回车符很重要,这是一个类似于停止符
-
R语言关于数据帧的知识点详解
数据帧是表或二维阵列状结构,其中每一列包含一个变量的值,并且每一行包含来自每一列的一组值. 以下是数据帧的特性. 列名称应为非空. 行名称应该是唯一的. 存储在数据帧中的数据可以是数字,因子或字符类型. 每个列应包含相同数量的数据项. 创建数据帧 # Create the data frame. emp.data <- data.frame( emp_id = c (1:5), emp_name = c("Rick","Dan","Michelle&
-
R语言之xlsx包读写Excel数据的操作
感谢Adrian A. Drǎgulescu发布的xlsx包 xlsx包提供了必要的工具来与Excel 2007进行交互.用户可以阅读和编写xlsx,并可以通过设置数据格式.字体.颜色和边框来控制电子表格的外观.设置打印区域,缩放控制,创建分割和冻结面板,添加页眉和页脚.包使用Apache POI项目中的java库.本篇主要分享利用xlsx工具包在读写xlsx过程中所碰到的问题及解决办法. 工具准备 强烈建议大家使用RStudio这个IDE,它是以今为止对R语言最友好的一个IDE之一,而且使用很
-
R语言变量级别的数据处理操作
变量级别的数据处理无非是对变量的增删改查. 增 即增加新的变量 R语言中,增加一个新变量形式语句如下: 变量名 <- 表达式 表达式可以包含多种运算符和函数.常见运算符包括: 运算符 描述 + 加 - 减 * 乘 / 除 ^或** 求幂 x%%y 求余(x mod y).5%%2的结果为1. x%/%y 整数除法.5%/%2的结果为2. 示例: #创建一个数据框 mydata <- data.frame(x1 = c(2,2,6,4), + x2 = c(3,4,2,8)) mydata x1
-
r语言-如何将数据标准化和中心化
中心化和标准化意义一样,都是消除量纲的影响 中心化:数据-均值 标准化:(数据-均值)/标准差 数据中心化: scale(data,center=T,scale=F) 数据标准化: scale(data,center=T,scale=T) 或默认参数scale(data) scale方法中的两个参数center和scale的解释: 1.center和scale默认为真,即T或者TRUE 2.center为真表示数据中心化 3.scale为真表示数据标准化 补充:R语言对数据进行标准化处理 有时候
-
R语言-进行数据的重新编码(recode)操作
在分析数据时我们经常会遇到将变量值转换成其他的值的情况(如:将连续变量转成分类变量)这时就需要我们对原有数据进行重新编码.本文将介绍R软件中常用的三种重编吗方法: 1.使用逻辑判断式编码. 2.使用cut函数编码. 3.使用car程序包的recode函数. (一)使用逻辑判断式 (1)现假设我们需要将下面的连续型变量x按照10与20分成三个组,新的分组名称为1.2.3: > x2=1*(x<=10)+2*(x>10&x<=20)+3*(x>20) > x2 [1
-
R语言-如何定义数据框的列名
1.在定义数据框时,定义列名: 例如: a<-c(2,23,45,6,7,1,6,7) b<-c(4,6,1,2,5,66,10,2) df<-data.frame(a,b) 此时数据框df中的列名分别是a.b 也可以如下: df<-data.frame(a1=a,b1=b) 此时的列名是a1.b1 2.修改数据框中列的名字 如果希望修改数据框中的列名,可以使用name函数进行修改 例如: names(df)<-c("a2","b2")
-
R语言-使用ifelse进行数据分组
数据分组,根据数据分析对象的特征,按照一定的数值指标,把数据分析对象划分为不同的区间部分来研究,以揭示内在的联系和规律性: 在R中,我们常用ifelse函数来进行数据的分组,跟excel中的if函数是同一种用法. ifelse(condition,TRUE,FALSE) > data <- read.table('1.csv', sep='|', header=TRUE); > > level <- ifelse( + data$cost<=20, "(0,2
-
R语言实现用cbind合并两列数据
我有两个数据文件,分别只有一列,这两列数据行数一行,我想把这两列合并到一个数据文件中,方便使用. 我的两个数据文件分别是1.txt,2.txt,保存后的文件名是3.txt. // 代码如下 gow1<-read.table("1.txt",header = FALSE) gow2<-read.table("2.txt",header = FALSE) View(gow1) View(gow2) gow<-cbind(gow1,gow2) View(
-
mysql 实现互换表中两列数据方法简单实例
由于最近项目,有这样一个需求,是把数据库中的两列数据互换,经过好久才搞定,这里写个简单实例,做过记录. 1.创建表及记录用于测试 CREATE TABLE `product` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '产品id', `name` varchar(50) NOT NULL COMMENT '产品名称', `original_price` decimal(5,2) unsigned NOT NULL COMMEN
-
pandas 使用apply同时处理两列数据的方法
多的不说,看了代码就懂了! df = pd.DataFrame ({'a' : np.random.randn(6), 'b' : ['foo', 'bar'] * 3, 'c' : np.random.randn(6)}) def my_test(a, b): return a + b df['Value'] = df.apply(lambda row: my_test(row['a'], row['c']), axis=1) print df 以上这篇pandas 使用apply同时处理两列
-
MyBatis将查询出的两列数据装配成键值对的操作方法
目录 描述: 操作: 1. 实现 ResultHandler 接口 2. 对应 DAO 层 3. 使用 描述: MyBatis 直接查询出的格式是 List 套 Map 的结构,当然利用 Stream 流进行转换也非常便捷,但如果这样的操作很多的话,不如利用 MyBatis 提供的 ResultHandler 接口进行实现,做成工具类使用. 此外,如果用 MyBatis 提供的 @MapKey ,也只是对应值有冗余,因为 MapKey取一个字段为键,取出的所有字段为值. 操作: 1. 实现 Re
-
详解Pandas如何高效对比处理DataFrame的两列数据
目录 楔子 combine_first combine update 楔子 我们在用 pandas 处理数据的时候,经常会遇到用其中一列数据替换另一列数据的场景.比如 A 列和 B 列,对 A 列中不为空的数据不作处理,对 A 列中为空的数据使用 B 列对应索引的数据进行替换.这一类的需求估计很多人都遇到,当然还有其它更复杂的. 解决这类需求的办法有很多,这里我们来推荐几个. combine_first 这个方法是专门用来针对空值处理的,我们来看一下用法. import pandas as pd
-
在sql中对两列数据进行运算作为新的列操作
如下所示: select a1,a2,a1+a2 a,a1*a2 b,a1*1.0/a2 c from bb_sb 把a表的a1,a2列相加作为新列a,把a1,a2相乘作为新列b,注意: 相除的时候得进行类型转换处理,否则结果为0. select a.a1,b.b1,a.a1+b.b1 a from bb_sb a ,bb_cywzbrzb b 这是两个不同表之间的列进行运算. 补充知识:Sql语句实现不同记录同一属性列的差值计算 所使用的表的具体结构如下图所示 Table中主键是(plateN
-
R语言 数据集行列互换的技巧分享
现在给大家介绍的数据处理技巧是长转宽,也就相当于Excel中的转置,不过用R语言实现的长转宽还有数据合并的功能,自然比Excel强大多了. 这里给大家介绍4个函数,其中melt().dcast()来自reshape2包,gather().spread()来自tidyr包 一.宽转长--melt().gather() mydata<-data.frame( name=c("store1","store2","store3","sto
-
R语言柱状图排序和x轴上的标签倾斜操作
R语言做柱状图大致有两种方法, 一种是基础库里面的 barplot函数, 另一个就是ggplot2包里面的geom_bar 此处用的是字符变量 统计其各频数,然后做出其柱状图.(横轴上的标签显示不全) t <- sort(table(dat1$L), decreasing = TRUE) #将频数表进行排序 r <- barplot(t, col = "blue", main = "柱状图", ylim = c(0,12), names.arg = di
-
R语言-解决处理矩阵遇到内存不足的问题
如下: Error : cannot allocate vector of size X Gb 类似于这种问题的可能处理办法: 1. 可以用matrix尽量不要用data frame; 2. 可以用integer matrix尽量不要用 double matrix; 3. 对于大量运算后最好加上一个gc(), 强制R语言回收内存: 4. 对于大矩阵而言用bigmemory包,可以将大矩阵放到临时文件中,不占用内存. 补充:R语言之内存管理 在处理大型数据过程中,R语言的内存管理就显得十分重要,以
-
R语言基于Keras的MLP神经网络及环境搭建
目录 Intro 环境搭建 本机电脑配置 安装TensorFlow以及Keras 安装R以及Rstudio 基于R语言的深度学习MLP 在Rstudio中安装Tensorflow和Keras MNIST数据集的预处理 深度学习MLP模型 总结和学习笔记 Intro R语言是我使用的第一种计算机语言,也是目前的主流数据分析语言之一,常常被人与python相比较.在EDA,制图和机器学习方面R语言拥有很多的的package可供选择.但深度学习方面由于缺少学习库以及合适的框架而被python赶超.但K
随机推荐
- 在Struts2中如何将父类属性序列化为JSON格式的解决方法
- Oracle连接出现ora-12154无法解析指定的连接标识符
- javascript判断是手机还是电脑访问网页的简单实例分享
- php使用curl发送json格式数据实例
- C#使用JavaScriptSerializer序列化时的时间类型处理
- BootStrap 智能表单实战系列(十)自动完成组件的支持
- 编码为GB2312网站让AJAX接收的数据显示支持中文
- 文本文件编码方式区别
- jsp中page指令用法详解
- 完美解决一开机就自动打开记事本的办法
- myEclipse配置jdk1.7教程
- C#图形区域剪切的实现方法
- Python3实现带附件的定时发送邮件功能
- Python统计单词出现的次数
- C# 16 进制字符串转 int的方法
- 微信小程序的tab选项卡的实现效果
- vue-cli3配置与跨域处理方法
- nginx ip黑名单动态封禁的例子
- C#程序员入门学习微信小程序的笔记
- Java线程间共享实现方法详解