C语言新手练习题之求第n个斐波那契数

目录
  • 前言
  • 一、思路
    • 1.非递归
    • 2.递归
  • 二、源代码以及运行截图
    • 非递归:
    • 递归:
  • 总结

前言

在C语言中,分别用递归和非递归两种方法实现求第n个斐波那契数

一、思路

首先分析一下关于斐波那契数列的原理:

第一个和第二个数都是1,之后的每个数都是前两个数之和,即:

1,1,2,3,5,8,……

1.非递归

用到了循环相关的知识,

当n>2的时候进入循环,将前两个数相加得到第三个数;

当n<=2的时候跳出循环。

2.递归

观察斐波那契数列可以得到一个公式:

根据这个公式就能进行递归。当n>2的时候进行递归,当n = 1或n = 2时返回1。

二、源代码以及运行截图

为了方便大家的交流和学习,我将程序源代码和运行截图放置在下方。

非递归:

源代码:

#include<stdio.h>
//递归和非递归分别实现求第n个斐波那契数
//非递归
int main()
{
	int i = 1;
	int j = 1;
	int temp = 0;
	int n = 0;
	int fib = 0;
	scanf("%d", &n);
	while (n > 0)
	{
		if (n > 2)
		{
			temp = j;
			j = i + j;
			i = temp;
		}
		else
			fib = j;
		n--;
	}
	printf("%d", fib);
	return 0;
}

运行截图:

递归:

源代码:

//递归
int Fib(int n)
{
	if (n > 2)
	{
		return Fib(n - 1) + Fib(n - 2);
	}
	else
	{
		return 1;
	}
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	while (1)
	{
		if (n <= 0)
		{
			printf("输入错误请重新输入:>");
		}
		else
		{
			printf("%d\n", Fib(n));
			break;
		}
	}
	return 0;
}

运行截图:

总结

以上就是今天要讲的内容,本文简单的介绍了用C语言如何求解第n个斐波那契数的两种思路,还进一步展示了代码的运行结果验证了作者的思路。

到此这篇关于C语言新手练习题之求第n个斐波那契数的文章就介绍到这了,更多相关C语言求第n个斐波那契数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言数据结构递归之斐波那契数列

    C语言数据结构递归之斐波那契数列 因为自己对递归还是不太熟练,于是做POJ1753的时候就很吃力,就是翻棋子直到棋盘上所有棋子的颜色一样为止,求最少翻多少次,方法是枚举递归.然后就打算先做另一道递归的题(从数组中取出n个元素的组合),但是同样在递归的问题上不太理解.好吧,于是复习CPP,在第229页的时候,看到了斐波那契数列,回想起之前做过的一道题目,发现可以用递归的方法来做.于是决定优化一下之前的代码. 以下这段摘自<C primer plus> 斐波那契数列的定义如下:第一个和第二个数字都

  • C语言中斐波那契数列的三种实现方式(递归、循环、矩阵)

    目录 一.递归 二.循环 三.矩阵 <剑指offer>里讲到了一种斐波那契数列的 O(logN) 时间复杂度的实现,觉得挺有意思的,三种方法都记录一下. 一.递归 一般来说递归实现的代码都要比循环要简洁,但是效率不高,比如递归计算斐波那契数列第n个元素. long long Fibonacci_Solution1(unsigned int n) { // printf("%d ", n); if (n <= 0) return 0; if (n == 1) retur

  • C语言深入探究斐波那契数列

    目录 一.递归思想 二.空间换时间 三.动态规划 四.通项公式 五.矩阵快速幂 六.总结 本文章参考leetcode斐波那契数官方题解 斐波那契的边界条件是 F(0)=0 和 F(1)=1.当 n>1 时,每一项的和都等于前两项的和,因此有如下递推关系:F(n)=F(n-1)+F(n-2) 一.递归思想 递归的思想是把一个大型复杂问题层层转化为一个与原问题规模更小的问题,问题被拆解成子问题后,递归调用继续进行,直到子问题无需进一步递归就可以解决的地步为止. #include<stdio.h&g

  • C语言实现斐波那契数列(非递归)的实例讲解

    废话不多说,直接上代码 #include <stdio.h> #include <stdlib.h> void f(int n); int main(void) { f(10); return 0; } void f(int n) { if(n==1) { printf("1\n"); return; } if(n==2) { printf("1 1\n"); return; } printf("1 1 "); int*

  • C语言求Fibonacci斐波那契数列通项问题的解法总结

    一:递归实现   使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1. 二:数组实现   空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快. 三:vector<int>实现   时间复杂度是0(n),时间复杂度是0(1),就是不知道vector的效率高不高,当然vector有自己的属性会占用资源. 四:queue<int>实现   当然队列比数组更适合实现斐波那契数列,时间复杂度和空间复杂度和vector<int&g

  • 用C语言求解第N项斐波那契数列问题

    目录 求解第N项斐波那契数列 求解斐波那契数列的前n项并输出及兔子繁殖问题 斐波那契数列的定义 算法思路 代码实现 兔子繁殖问题 求解第N项斐波那契数列 斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89... 这个数列从第3项开始,每一项都等于前两项之和.斐波那契数列,又称黄金分割数列,显然它又是一个线性递推数列,由数学家莱昂纳多·斐波纳契首次引入此概念.在现代的物理,化学,生物等诸多领域,皆有重大影响. 在此求解过程中,我用了if 语句和for循环.话不多说

  • C语言新手练习题之求第n个斐波那契数

    目录 前言 一.思路 1.非递归 2.递归 二.源代码以及运行截图 非递归: 递归: 总结 前言 在C语言中,分别用递归和非递归两种方法实现求第n个斐波那契数 一.思路 首先分析一下关于斐波那契数列的原理: 第一个和第二个数都是1,之后的每个数都是前两个数之和,即: 1,1,2,3,5,8,…… 1.非递归 用到了循环相关的知识, 当n>2的时候进入循环,将前两个数相加得到第三个数: 当n<=2的时候跳出循环. 2.递归 观察斐波那契数列可以得到一个公式: 根据这个公式就能进行递归.当n>

  • php求斐波那契数的两种实现方式【递归与递推】

    本文实例讲述了php求斐波那契数的两种实现方式.分享给大家供大家参考,具体如下: 斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:1.1.2.3.5.8.13.21.--在数学上,斐波那契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相

  • C++求斐波那契数的实例代码

    题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 -- 如果求其第6项,则应为8. 求第n项菲氏数. 输入描述:输入数据含有不多于50个的正整数n(0<=n<=46). 输出描述:对于每个n,计算其第n项菲氏数,每个结果应单独占一行. 题目分析:先把第0项到第46项的斐波那契数求出来,放在一个数组中,然后,直接查表即可,这样就不会超时. 参考代码:

  • Python/R语言分别实现斐波那契数列的示例详解

    目录 前言 1.年龄计算 1.1 图解问题 1.2 代码解决 1.3 实验小结 2.斐波那契数列 2.1 图解问题 2.2 代码实现 2.3 实验小结 总结 前言 此专栏为python与R语言对比学习的文章:以通俗易懂的小实验,带领大家深入浅出的理解两种语言的基本语法,并用以实际场景!感谢大家的关注,希望对大家有所帮助. “博观而约取,厚积而薄发!”谨以此言,望诸君共勉 本文将前两个小实验整理拼凑再了一起 :分别是“年龄计算”.“斐波那契数列”.具体的项目介绍见下文. 1.年龄计算 有 5 个人

  • C语言使用普通循环方法和递归求斐波那契序列示例代码

    复制代码 代码如下: #include <stdio.h> int fac(int x); int main(void){    int n;    scanf("%d", &n);    if (n == 1 || n == 2)        printf("1\n");    else if (n == 3)        printf("2\n");    else    {        int last = 1; 

  • java数学归纳法非递归求斐波那契数列的方法

    本文实例讲述了java数学归纳法非递归求斐波那契数列的方法.分享给大家供大家参考.具体如下: Integer能表示的最大值为 2147483647 大概是21.4亿,这里没有考虑溢出情况(当size为983时就会溢出)! import java.util.List; import java.util.ArrayList; /** * @author jxqlovejava * 斐波那契数列 */ public class Fibonacci { public static List<Intege

随机推荐