Python使用 OpenCV 进行图像投影变换

目录

投影变换(仿射变换)

在数学中,线性变换是将一个向量空间映射到另一个向量空间的函数,通常由矩阵实现。如果映射保留向量加法和标量乘法,则映射被认为是线性变换。

要将线性变换应用于向量(即,一个点的坐标,在我们的例子中——像素的 x 和 y 值),需要将该向量乘以表示线性变换的矩阵。作为输出,你将获得一个坐标转换后的向量。

投影变换可以用以下矩阵表示:

其中:

是一个旋转矩阵。该矩阵定义了将要执行的变换类型:缩放、旋转等。

是平移向量。它只是移动点。

是投影向量。对于仿射变换,该向量的所有元素始终等于 0。

如果 x 和 y 是一个点的坐标,则可以通过简单的乘法进行变换:

这里,x' 和 y' 是变换点的坐标。

这就是仿射变换的全部理论。现在我将深入研究该程序:

步骤 1:读取源图像并获取源图像大小:

# Read source image
img_src = cv2.imread('source_image.jpg')
h, w, c = img_src.shape

# Get source image parameter:
#[[left,top], [left,bottom], [right, top], [right, bottom]]

img_src_coordinate = np.array([[0,0],[0,h],[w,0],[w,h]])

根据源图像,我们将得到相关坐标如下:

[[左,上],[左,下],[右,上],[右,下]]

好的!现在我们使用 get_paste_position 来获取目标图像中的坐标,源图像将被粘贴到该坐标。

def get_paste_position(event, x, y, flags, paste_coordinate_list):
    cv2.imshow('collect coordinate', img_dest_copy)
    if event == cv2.EVENT_LBUTTONUP:
    # Draw circle right in click position
    cv2.circle(img_dest_copy, (x, y), 2, (0, 0, 255), -1)
    # Append new clicked coordinate to paste_coordinate_list
    paste_coordinate_list.append([x, y])

点击4个点后,我们将4个点保存到paste_coordinate_list:

while True:
    cv2.waitKey(1)
    if len(paste_coordinate) == 4:
        break

然后,这 4 个点将通过 cv2.findHomography 计算投影变换矩阵。

matrix, _ = cv2.findHomography(img_src_coordinate, paste_coordinate, 0)

得到投影变换矩阵后,我们将使用 cv2.warpPerspective 将源图像转换为具有目标图像大小的透视图像。

perspective_img = cv2.warpPerspective(img_src, matrix, (img_dest.shape[1], img_dest.shape[0]))

这是透视图的样子:

透视图

最后,将透视图像应用于目标图像,这就是最终效果:

完整代码:

import cv2 as cv2
import numpy as np

# This function will get click pixel coordinate that source image will be pasted to destination image
def get_paste_position(event, x, y, flags, paste_coordinate_list):
    cv2.imshow('collect coordinate', img_dest_copy)
    if event == cv2.EVENT_LBUTTONUP:
    # Draw circle right in click position
    cv2.circle(img_dest_copy, (x, y), 2, (0, 0, 255), -1)

    # Append new clicked coordinate to paste_coordinate_list
    paste_coordinate_list.append([x, y])
if __name__ == '__main__':

    # Read source image
    img_src = cv2.imread('woman-1807533_960_720.webp', cv2.IMREAD_COLOR)

    # cv2.imwrite('source_image.jpg', img_src)
    h, w, c = img_src.shape

    # Get source image parameter: [[left,top], [left,bottom], [right, top], [right, bottom]]
    img_src_coordinate = np.array([[0,0],[0,h],[w,0],[w,h]])

    # Read destination image
    img_dest = cv2.imread('billboard-g7005ff0f9_1920.jpg', cv2.IMREAD_COLOR)

    # copy destination image for get_paste_position (Just avoid destination image will be draw)
    img_dest_copy = img_dest.copy()#np.tile(img_dest, 1)

    # paste_coordinate in destination image
    paste_coordinate = []
    cv2.namedWindow('collect coordinate')
    cv2.setMouseCallback('collect coordinate', get_paste_position, paste_coordinate)

    while True:
        cv2.waitKey(1)
        if len(paste_coordinate) == 4:
            break
    paste_coordinate = np.array(paste_coordinate)

    # Get perspective matrix
    matrix, _ = cv2.findHomography(img_src_coordinate, paste_coordinate, 0)
    print(f'matrix: {matrix}')
    perspective_img = cv2.warpPerspective(img_src, matrix, (img_dest.shape[1], img_dest.shape[0]))
    cv2.imshow('img', perspective_img)
    cv2.copyTo(src=perspective_img, mask=np.tile(perspective_img, 1), dst=img_dest)
    cv2.imshow('result', img_dest)
    cv2.waitKey()
    cv2.destroyAllWindows()

到此这篇关于Python使用 OpenCV 进行图像投影变换的文章就介绍到这了,更多相关Python OpenCV 图像投影内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python OpenCV处理图像之图像直方图和反向投影

    本文实例为大家分享了Python OpenCV图像直方图和反向投影的具体代码,供大家参考,具体内容如下 当我们想比较两张图片相似度的时候,可以使用这一节提到的技术 直方图对比 反向投影 关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码: 0x01. 绘制直方图 import cv2.cv as cv def drawGraph(ar,im, size): #Draw the histogram on the image minV, maxV, minloc, maxloc = cv.

  • Python+OpenCV实现表面缺陷检测

    对于现在很多工业检测,特别是对一些精密的器件进行筛选,往往都是像素级别的,十分的精确. 主要思想 将图像转化为二值图像 在对图像进行腐蚀/膨胀处理 在进行轮廓检测 筛选目标大小符合的轮廓(排除误差小的轮廓) 在在进行膨胀化处理,将轮廓信息绘制出 import cv2 import os import numpy as np import time t1 = time.time() img = cv2.imread('./label/28901647.jpg', 0) img_copy = cv2

  • python OpenCV计算图片相似度的5种算法

    目录 5种算法 参考文章: 原始两张图片: 代码运行结果如下. 5种算法 值哈希算法.差值哈希算法和感知哈希算法都是值越小,相似度越高,取值为0-64,即汉明距离中,64位的hash值有多少不同. 三直方图和单通道直方图的值为0-1,值越大,相似度越高. 源代码如下: import cv2 import numpy as np from PIL import Image import requests from io import BytesIO import matplotlib matplo

  • Python+OpenCV读写视频的方法详解

    目录 读视频,提取帧 接口函数:cv2.VideoCapture() 获取视频信息 使用set(cv2.CAP_PROP_POS_FRAMES)读取指定帧 读取函数(重点) 将图像写为视频 示例 fourcc 读视频,提取帧 接口函数:cv2.VideoCapture() 通过video_capture = cv2.VideoCapture(video_path)可以获取读取视频的句柄.而后再通过flag, frame = video_capture.read()可以读取当前帧,flag表示读取

  • Python OpenCV中的drawMatches()关键匹配绘制方法

    目录 作用说明 函数原型 参数详解 结果 作用说明 该方法被用于绘制关键点的匹配情况.我们看到的许多匹配结果都是使用这一方法绘制的——一左一右两张图像,匹配的关键点之间用线条链接. 函数原型 cv.drawMatches( img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg cv.drawMatche

  • Python OpenCV 图像矫正的原理实现

    目录 题目描述 基本思路 核心代码 题目描述 目录hw1下的图像是一些胶片的照片,请将其进行度量矫正. 推荐流程:采用Canny算子,检测边缘点:采用Hough直线检测,根据边缘点检测胶片边缘对应的4条直线:4条直线在图像平面中的交点为胶片图像的4个顶点.根据4个顶点与真实世界中胶片的位置(假设胶片图像长宽比为4:3),得到两个平面之间的单应变换矩阵,并根据单应变换矩阵实现图像矫正. 基本思路 使用Canny算子,检测边缘点:以边缘点作为输入,采用Hough直线检测,检测出最多点共线的四条直线,

  • opencv+python实现图像矫正

    本文实例为大家分享了opencv+python实现图像矫正的具体代码,供大家参考,具体内容如下 需求:将斜着拍摄的文本图像进行矫正 python代码 import numpy as np import cv2 as cv def shape_correction(img):     (height, width) = img.shape[:2]     print(img.shape)     img_gau = cv.GaussianBlur(img, (5, 5), 0)     canny

  • Python+OpenCV实现图片及视频中选定区域颜色识别

    近期,需要实现检测摄像头中指定坐标区域内的主体颜色,通过查阅大量相关的内容,最终实现代码及效果如下,具体的实现步骤在代码中都详细注释,代码还可以进一步优化,但提升有限. 主要实现过程:按不同颜色的取值范围,对图像进行循环遍历,转换为灰度图,将本次遍历的颜色像素转换为白色,对白色部分进行膨胀处理,使其更加连续,计算白色部分外轮廓包围的面积累加求和,比较每种颜色围起来面积,保存最大值及其颜色,所有颜色遍历完后,返回最大值对应的颜色,显示在图像上 如果有类似的颜色识别的任务,可参考以下代码修改后实现具

  • Python使用 OpenCV 进行图像投影变换

    目录 投影变换(仿射变换) 在数学中,线性变换是将一个向量空间映射到另一个向量空间的函数,通常由矩阵实现.如果映射保留向量加法和标量乘法,则映射被认为是线性变换. 要将线性变换应用于向量(即,一个点的坐标,在我们的例子中——像素的 x 和 y 值),需要将该向量乘以表示线性变换的矩阵.作为输出,你将获得一个坐标转换后的向量. 投影变换可以用以下矩阵表示: 其中: 是一个旋转矩阵.该矩阵定义了将要执行的变换类型:缩放.旋转等. 是平移向量.它只是移动点. 是投影向量.对于仿射变换,该向量的所有元素

  • python在OpenCV里实现投影变换效果

    前面学习了仿射变换,是经常使用到的变换,也很容易理解.在日常生活中,经常会遇到下面这种的情况: 仔细地观察比亚迪秦这台汽车的车牌,发现它拍照的角度不是垂直的方向,而是有一个角度,当要进行车牌识别的时候,发现字符是变形的,与电脑里比较的图片肯定有区别,因此识别不出来.这时怎么办呢?就需要经过一个投影变换才可以把车牌号纠正过来,才能进入识别过程. 好吧,到这里认识到投影变换的感性认识了,那么你又会继续考虑下一个问题,在软件里怎么样计算呢,难道还是使用仿射变换的矩阵.从这里看一下,前面闽A比较大,后面

  • Python基于opencv的图像压缩算法实例分析

    本文实例讲述了Python基于opencv的图像压缩算法.分享给大家供大家参考,具体如下: 插值方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值. 函数 cvResize 将图像 src 改变尺寸得到与 dst 同样大小.若设定 ROI,函数将按

  • python使用opencv resize图像不进行插值的操作

    如下所示: def resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None): 如果使用vanilla resize,不改变默认参数,就会对原图像进行插值操作.不关你是扩大还是缩小图片,都会通过插值产生新的像素值. 对于语义分割,target的处理,如果是对他进行resize操作的话.就希望不产生新的像素值,因为他的颜色信息,代表了像素的类别信息. 但是我们有时候希望resize之后不产生新的像素值,而是产生利用最近邻点

  • python 利用opencv实现图像网络传输

    本代码主要实现的是利用网络传输图片,用在我的树莓派项目之上.该项目在PC上运行服务端,树莓派上运行客户端,两者连接到同一局域网中,修改代码中的IP地址,就可以实现将树莓派采集到的图像数据实时传输到PC端.先运行服务端代码,然后运行客户端代码即可.树莓派摄像头使用的是普通的USB摄像头,并且在树莓派上安装了opencv,在树莓派上安装opencv的过程可以参考https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-install-open

  • python 用opencv实现图像修复和图像金字塔

    我们将学习如何通过一种称为修复的方法去除旧照片中的小噪音,笔画等.基本思路很简单:用相邻像素替换那些坏标记,使其看起来像邻域. cv2.inpaint() cv2.INPAINT_TELEA cv2.INPAINT_NS import numpy as np import cv2 as cv img = cv.imread('messi_2.jpg') mask = cv.imread('mask2.png',0) dst = cv.inpaint(img,mask,3,cv.INPAINT_T

  • python 基于opencv 绘制图像轮廓

    图像轮廓概念 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 谈起轮廓不免想到边缘,它们确实很像.简单的说,轮廓是连续的,边缘并不全都连续(下图).其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手:而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓. 寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图. 注意:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一

  • python基于opencv 实现图像时钟

    解决方案详解 绘制表盘 表盘上只有60条分/秒刻线和12条小时刻线,当然还有表盘的外部轮廓圆,也就是重点在如何画72根线.先把简单的圆画出来: import cv2 as cv import math import datetime import numpy as np margin = 5 # 上下左右边距 radius = 220 # 圆的半径 center = (center_x, center_y) = (225, 225) # 圆心 # 1. 新建一个画板并填充成白色 img = np

  • 基于Python的OpenCV骨架化图像并显示(skeletonize)

    1. 效果图 自己画一张图,原图 VS 骨架效果图如下: opencv logo原图 VS 骨架化效果图如下: 2. 源码 # 图像骨架化~ import cv2 import imutils import numpy as np img = np.zeros((390, 390, 3), dtype="uint8") cv2.putText(img, "Beautiful Girl.....", (50, 190), cv2.FONT_HERSHEY_SIMPLE

  • 基于Python和openCV实现图像的全景拼接详细步骤

    基本介绍 图像的全景拼接,即"缝合"两张具有重叠区域的图来创建一张全景图.其中用到了计算机视觉和图像处理技术有:关键点检测.局部不变特征.关键点匹配.RANSAC(Random Sample Consensus,随机采样一致性)和透视变形. 具体步骤 (1)检测左右两张图像的SIFT关键特征点,并提取局部不变特征 : (2)使用knnMatch检测来自右图(左图)的SIFT特征,与左图(右图)进行匹配 : (3)计算视角变换矩阵H,用变换矩阵H对右图进行扭曲变换: (4)将左图(右图)

随机推荐