Spring Boot 整合Redis 实现优惠卷秒杀 一人一单功能

目录
  • 一、什么是全局唯一ID
    • 全局唯一ID
    • Redis实现全局唯一ID
  • 二、环境准备
  • 三、实现秒杀下单
  • 四、库存超卖问题
    • 问题分析
    • 乐观锁解决库存超卖
    • Jmeter 测试
  • 五、优惠卷秒杀 实现一人一单
  • 小结

一、什么是全局唯一ID

全局唯一ID

在分布式系统中,经常需要使用全局唯一ID查找对应的数据。产生这种ID需要保证系统全局唯一,而且要高性能以及占用相对较少的空间。

全局唯一ID在数据库中一般会被设成主键,这样为了保证数据插入时索引的快速建立,还需要保持一个有序的趋势。

这样全局唯一ID就需要保证这两个需求:

  • 全局唯一
  • 趋势有序

我们的场景是 优惠卷秒杀抢购, 当用户抢购时,就会生成订单 并保存到 数据库 的订单表中,而订单表 如果使用数据库自增ID就会存在以下问题

  • id的规律性太明显
  • 受单表数据量限制

场景分析:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适。

场景分析二: 随着我们商城规模越来越大,MySQL 的单表的容量不宜超过500W,数据量过大之后,我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。

全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:

为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:

ID的组合为

  • 符号位: 1bit,永远为0
  • 时间戳: 31bit,以秒为单位可以使用69年
  • 序列号: 32bit,秒内的计数器,支持每秒产生 2^32 个 不同ID

Redis实现全局唯一ID

编写工具类

@Component
public class RedisIdWorker {
    /**
     * 开始时间戳
     */
    private static final long BEGIN_TIMESTAMP = 1640995200L;
    /**
     * 序列号的位数
     */
    private static final int COUNT_BITS = 32;

    private StringRedisTemplate stringRedisTemplate;

    public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }

    public long nextId(String keyPrefix) {
        // 1.生成时间戳
        LocalDateTime now = LocalDateTime.now();
        long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
        long timestamp = nowSecond - BEGIN_TIMESTAMP;

        // 2.生成序列号
        // 2.1.获取当前日期,精确到天
        String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
        // 2.2.自增长
        long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);

        // 3.拼接并返回
        return timestamp << COUNT_BITS | count;
    }
}

测试存入Redis

@Autowired
private RedisIdWorker redisIdWorker;

private ExecutorService es = Executors.newFixedThreadPool(500);
@Test
public void testWorkerId() throws InterruptedException {
    CountDownLatch latch = new CountDownLatch(300);
    Runnable task = () -> {
        for (int i = 0; i < 100; i++) {
            long id = redisIdWorker.nextId("order");
            System.out.println("id = " + id);
        }
        latch.countDown();
    };

    long begin = System.currentTimeMillis();
    for (int i = 0; i < 300; i++) {
        es.submit(task);
    }
    latch.await();
    long end = System.currentTimeMillis();
    System.out.println("times = " + (end- begin));
}

这里用到了 CountDownlatch,简单的介绍一下:

CountDownLatch名为信号枪:主要的作用是同步协调在多线程的等待于唤醒问题

我们如果没有CountDownLatch ,那么由于程序是异步的,当异步程序没有执行完时,主线程就已经执行完了,然后我们期望的是分线程全部走完之后,主线程再走,所以我们此时需要使用到CountDownLatch

CountDownLatch 中有两个最重要的方法

  • countDown
  • await

await 是阻塞方法,我们担心线程没有执行完时,main线程就执行,所以可以使用await就阻塞主线程, 那么什么时候main线程不在阻塞呢? 当 CountDownLatch 内部维护的变量为0时,就不再阻塞,直接放行

什么时候 CountDownLatch 维护的变量变为0 呢,我们只需要调用一次countDown ,内部变量就减少1,我们让分线程和变量绑定, 执行完一个分线程就减少一个变量,当分线程全部走完,CountDownLatch 维护的变量就是0,此时await就不再阻塞,统计出来的时间也就是所有分线程执行完后的时间。

二、环境准备

需要搭建登录环境,基础环境代码和sql文件均已上传 GitCode 链接:基础环境和SQL

三、实现秒杀下单

添加优惠卷

VoucherServiceImpl 核心代码

@Service
public class VoucherServiceImpl extends ServiceImpl<VoucherMapper, Voucher> implements IVoucherService {
    // 该类无代码,直接MyBatis-Plus继承实现类 即可,自动完成持久化
    @Autowired
    private ISeckillVoucherService seckillVoucherService;

    @Override
    public ResultBean<List<Voucher>> queryVoucherOfShop(Long shopId) {
        // 查询优惠券信息
        List<Voucher> vouchers = getBaseMapper().queryVoucherOfShop(shopId);
        // 返回结果
        return ResultBean.create(0, "success", vouchers);
    }

    @Override
    public void addSeckillVoucher(Voucher voucher) {
        // 保存优惠券
        save(voucher);
        // 保存秒杀信息
        SeckillVoucher seckillVoucher = new SeckillVoucher();
        seckillVoucher.setVoucherId(voucher.getId());
        seckillVoucher.setStock(voucher.getStock());
        seckillVoucher.setBeginTime(voucher.getBeginTime());
        seckillVoucher.setEndTime(voucher.getEndTime());
        seckillVoucherService.save(seckillVoucher);
    }
}

VoucherController 接口层

@RestController
@CrossOrigin
@RequestMapping("/voucher")
public class VoucherController {

    @Autowired
    private IVoucherService voucherService;

    /**
     * 新增秒杀券
     * @param voucher 优惠券信息,包含秒杀信息
     * @return 优惠券id
     */
    @PostMapping("seckill")
    public ResultBean addSeckillVoucher(@RequestBody Voucher voucher) {
        voucherService.addSeckillVoucher(voucher);
        return Result.ok(voucher.getId());
    }
}

编写下单业务

VoucherOrderServiceImpl 优惠卷订单核心业务类

@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder>  implements IVoucherOrderService {

    @Autowired
    private ISeckillVoucherService seckillVoucherService;

    @Autowired
    private RedisIdWorker redisIdWorker;

    @Override
    @Transactional
    public Result seckillVoucher(Long voucherId) {
        //1. 查询优惠卷
        SeckillVoucher seckillVoucher = seckillVoucherService.getById(voucherId);
        //2. 判断秒杀是否开始 开始时间大于当前时间表示未开始抢购
        if (seckillVoucher.getBeginTime().isAfter(LocalDateTime.now())) {
            return Result.fail("秒杀尚未开始!");
        }
        //3. 判断秒杀是否结束
        if (seckillVoucher.getEndTime().isBefore(LocalDateTime.now())) {
            return Result.fail("秒杀已经结束!");
        }
        //4. 判断库存是否充足
        if (seckillVoucher.getStock() < 1) {
            return Result.fail("库存不足!");
        }

        Long userId = UserHolder.getUser().getId();
        //5. 查询订单
        //5.1 查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
        //5.2 判断并返回
        if (count > 0) {
            return Result.fail("用户已经购买过!");
        }

        //6. 扣减库存
        boolean success = seckillVoucherService.update().setSql("stock = stock -1")
                .eq("voucher_id", voucherId).update();
        if (!success) {
            return Result.fail("库存不足!");
        }

        //7. 创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        voucherOrder.setUserId(userId);
        voucherOrder.setVoucherId(voucherId);
        save(voucherOrder);
        //8. 返回订单id
        return Result.ok(orderId);
    }
}

VoucherOrderController 接口层

@RestController
@CrossOrigin
@RequestMapping("/voucher_order")
public class VoucherOrderController {

    @Autowired
    private IVoucherOrderService voucherOrderService;

    @PostMapping("seckill/{id}")
    public Result seckillVoucher(@PathVariable("id") Long voucherId) {
        return voucherOrderService.seckillVoucher(voucherId);
    }
}

测试抢购秒杀优惠卷

ApiFox 新增以下接口

添加秒杀卷

测试返回成功即可。

抢购秒杀优惠卷接口

测试无误,抢购成功!

四、库存超卖问题

问题分析

有关超卖问题分析:在我们原有代码中是这么写的

 if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    //5,扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }

假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。

超卖问题是典型的多线程安全问题, 这种情况下常见的解决方案就是 加 锁:而对于加锁,我们通常有两种解决方案

悲观锁:

悲观锁可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等

乐观锁:

会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,这套机制的核心逻辑在于,**如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,**如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如cas

乐观锁的典型代表:就是CAS,利用CAS进行无锁化机制加锁,varNum是操作前读取的内存值,while中的var1+var2 是预估值,如果预估值 == 内存值,则代表中间没有被人修改过,此时就将新值去替换 内存值

其中do while 是为了在操作失败时,再次进行自旋操作,即把之前的逻辑再操作一次。

int varNum;
do {
    varNum = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

return var5;

我们采用的方式为:

在操作时,对版本号进行+1 操作,然后要求version 如果是1 的情况下,才能操作,那么第一个线程在操作后,数据库中的version变成了2,但是他自己满足version=1 ,所以没有问题,此时线程2执行,线程2 最后也需要加上条件version =1 ,但是现在由于线程1已经操作过了,所以线程2,操作时就不满足version=1 的条件了,所以线程2无法执行成功

乐观锁解决库存超卖

加入以下代码解决超卖问题

之前的方式要修改前后都保持一致,但是这样我们分析过,成功的概率太低,所以我们的乐观锁需要变一下,改成stock大于0 即可

boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0

知识拓展

针对CAS中的自旋压力过大,我们可以使用Longaddr这个类去解决

Java8 提供的一个对AtomicLong改进后的一个类,LongAdder

大量线程并发更新一个原子性的时候,天然的问题就是自旋,会导致并发性问题,当然这也比我们直接使用syn来的好

所以利用这么一个类,LongAdder来进行优化

如果获取某个值,则会对cell和base的值进行递增,最后返回一个完整的值

以上的解决方式,依然有些问题,下面使用Jmeter进行测试

Jmeter 测试

添加线程组

添加JSON断言,我们认为返回结果为false的就是请求失败

在线程组右击选择断言 --> JSON 断言

加入以下判断

判断success字段,值是否为true,是true就是返回成功~ 反之失败

查看结果树、HTTP信息请求头、汇总报告、聚合报告等均在http请求右击添加即可

启动,查看返回的结果

查看聚合报告

异常率这么高,再来看数据库

数量正确,我们再看订单表

id都一样,这可不行啊,我们真实场景下,发放优惠卷不会让一个用户去抢购所有的订单秒杀优惠卷,这样商家就太亏了,全让黄牛给抢走了,这可不行,我们需要限制用户的抢购数量。

五、优惠卷秒杀 实现一人一单

初步实现

int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
if (count > 0) {
    return Result.fail("用户已经购买过!");
}

存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作

注意:在这里提到了非常多的问题,我们需要慢慢的来思考,首先我们的初始方案是封装了一个createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 锁

加上悲观锁

@Override
    public Result seckillVoucher(Long voucherId) {
        //1. 查询优惠卷
        SeckillVoucher seckillVoucher = seckillVoucherService.getById(voucherId);
        //2. 判断秒杀是否开始 开始时间大于当前时间表示未开始抢购
        if (seckillVoucher.getBeginTime().isAfter(LocalDateTime.now())) {
            return Result.fail("秒杀尚未开始!");
        }
        //3. 判断秒杀是否结束
        if (seckillVoucher.getEndTime().isBefore(LocalDateTime.now())) {
            return Result.fail("秒杀已经结束!");
        }
        //4. 判断库存是否充足
        if (seckillVoucher.getStock() < 1) {
            return Result.fail("库存不足!");
        }

        Long userId = UserHolder.getUser().getId();
        synchronized (userId.toString().intern()) {
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId, userId);
        }
    }

    @Transactional
    @Override
    public Result createVoucherOrder(Long voucherId, Long userId) {
        //5. 查询订单
        //5.1 查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
        //5.2 判断并返回
        if (count > 0) {
            return Result.fail("用户已经购买过!");
        }

        //6. 扣减库存
        boolean success = seckillVoucherService.update().setSql("stock = stock -1")
                .eq("voucher_id", voucherId).gt("stock", 0).
                update();
        if (!success) {
            return Result.fail("库存不足!");
        }

        //7. 创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        voucherOrder.setUserId(userId);
        voucherOrder.setVoucherId(voucherId);
        save(voucherOrder);
        //8. 返回订单id
        return Result.ok(orderId);
    }

在启动类加入以下注解,启动AspectJ

@EnableAspectJAutoProxy(exposeProxy = true)

以上代码,采用悲观锁解决了高并发下,一人多单的场景,同时,也解决了事务失效。引入了AspectJ解决!

Jmeter 测试

再次测试,查看结果

可见返回的结果异常率如此高,再看请求信息

可见已经成功的拦截了错误请求,JSON断言正确。

查看数据库 信息

优惠卷数量

可见成功的完成了 在高并发请求下 的一人一单功能。

小结

以上就是【Bug 终结者】对 微服务Spring Boot 整合Redis 实现优惠卷秒杀 一人一单 的简单介绍,在分布式系统下,高并发的场景下,会出现此类库存超卖问题,本篇文章介绍了采用乐观锁来解决,但是依然是有弊端,下章节,我们将继续进行优化,持续关注!

到此这篇关于Spring Boot 整合Redis 实现优惠卷秒杀 一人一单的文章就介绍到这了,更多相关Spring Boot 整合Redis 优惠卷秒杀内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Springboot+redis+Vue实现秒杀的项目实践

    目录 1.Redis简介 2.实现代码 3.启动步骤 4.使用ab进行并发测试 5.线程安全 6.总结 7.参考资料 1.Redis简介 Redis是一个开源的key-value存储系统. Redis的五种基本类型:String(字符串),list(链表),set(集合),zset(有序集合),hash,stream(Redis5.0后的新数据结构) 这些数据类型都支持push/pop.add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的. Redis的应用场景为配合关

  • SpringBoot使用Redisson实现分布式锁(秒杀系统)

    前面讲完了Redis的分布式锁的实现,接下来讲Redisson的分布式锁的实现,一般提及到Redis的分布式锁我们更多的使用的是Redisson的分布式锁,Redis的官方也是建议我们这样去做的.Redisson点我可以直接跳转到Redisson的官方文档. 1.1.引入Maven依赖 <dependency> <groupId>org.redisson</groupId> <artifactId>redisson-spring-boot-starter&l

  • SpringBoot+RabbitMQ+Redis实现商品秒杀的示例代码

    目录 业务分析 创建表 功能实现 1.用户校验 2.下单 3.减少库存 4.支付 总结 业务分析 一般而言,商品秒杀大概可以拆分成以下几步: 用户校验 校验是否多次抢单,保证每个商品每个用户只能秒杀一次 下单 订单信息进入消息队列,等待消费 减少库存 消费订单消息,减少商品库存,增加订单记录 付款 十五分钟内完成支付,修改支付状态 创建表 goods_info 商品库存表 列 说明 id 主键(uuid) goods_name 商品名称 goods_stock 商品库存 package com.

  • SpringBoot之使用Redis实现分布式锁(秒杀系统)

    一.Redis分布式锁概念篇 建议直接采用Redis的官方推荐的Redisson作为redis的分布式锁 1.1.为什么要使用分布式锁 我们在开发应用的时候,如果需要对某一个共享变量进行多线程同步访问的时候,可以使用我们学到的Java多线程的18般武艺进行处理,并且可以完美的运行,毫无Bug! 注意这是单机应用,也就是所有的请求都会分配到当前服务器的JVM内部,然后映射为操作系统的线程进行处理!而这个共享变量只是在这个JVM内部的一块内存空间! 后来业务发展,需要做集群,一个应用需要部署到几台机

  • 基于Redis结合SpringBoot的秒杀案例详解

    目录 1.构建SpringBoot项目 2.启动类 3.在Controller层里定义秒杀接口 4.在Service层里通过lua脚本实现秒杀效果 5.配置redis连接参数 6.演示秒杀效果 6.1 准备redis环境 6.2 启动项目 6.3 多线程形式发起秒杀请求 1.构建SpringBoot项目 搭建名为quickbuy的springboot项目,相关的依赖包如下所示: <?xml version="1.0" encoding="UTF-8"?>

  • springboot +rabbitmq+redis实现秒杀示例

    目录 实现说明 1.工具准备 2.数据表 3.pom 4.代码结构 5.配置config 6.订单业务层 7.redis实现层 8.mq实现层 9.redis模拟初始化库存量 10.controller控制层 11.测试 12.测试结果 实现说明 这里的核心在于如何在大并发的情况下保证数据库能扛得住压力,因为大并发的瓶颈在于数据库.如果用户的请求直接从前端传到数据库,显然,数据库是无法承受几十万上百万甚至上千万的并发量的.因此,我们能做的只能是减少对数据库的访问.例如,前端发出了100万个请求,

  • springboot集成redis实现简单秒杀系统

    本文实例为大家分享了springboot集成redis实现简单秒杀系统的具体代码,供大家参考,具体内容如下 项目是有地址的,我会放到文章的最后面 1. 直接service,我们会介绍两种秒杀模式 public interface GoodsService { /** * 通过lua脚本实现的秒杀 * @param skuCode 商品编码 * @param buyNum 购买数量 * @return 购买数量 */ Long flashSellByLuaScript(String skuCode

  • Spring Boot 整合Redis 实现优惠卷秒杀 一人一单功能

    目录 一.什么是全局唯一ID 全局唯一ID Redis实现全局唯一ID 二.环境准备 三.实现秒杀下单 四.库存超卖问题 问题分析 乐观锁解决库存超卖 Jmeter 测试 五.优惠卷秒杀 实现一人一单 小结 一.什么是全局唯一ID 全局唯一ID 在分布式系统中,经常需要使用全局唯一ID查找对应的数据.产生这种ID需要保证系统全局唯一,而且要高性能以及占用相对较少的空间. 全局唯一ID在数据库中一般会被设成主键,这样为了保证数据插入时索引的快速建立,还需要保持一个有序的趋势. 这样全局唯一ID就需

  • 微服务Spring Boot 整合Redis 阻塞队列实现异步秒杀下单思路详解

    目录 引言 一.秒杀优化 - 异步秒杀思路 二.秒杀优化 - 基于Redis完成秒杀资格判断 三.基于阻塞队列完成异步秒杀下单 四.测试程序 五.源码地址 引言 本章节,介绍使用阻塞队列实现秒杀的优化,采用异步秒杀完成下单的优化! 一.秒杀优化 - 异步秒杀思路 当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤 查询优惠卷 判断秒杀库存是否足够 查询订单 校验是否是一人一单 扣减库存 创建订单,完成 在以上6个步骤中,

  • spring boot整合redis实现RedisTemplate三分钟快速入门

    引入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> RedisTemplate五种数据结构的操作 redisTemplate.opsForValue(); //操作字符串 redisTemplate.opsForHash();

  • 微服务Spring Boot 整合 Redis 实现好友关注功能

    目录 引言 一.Redis 实现好友关注 – 关注与取消关注 二.Redis 实现好友关注 – 共同关注功能 小结 引言 本博文参考 黑马 程序员B站 Redis课程系列 在点评项目中,有这样的需求,如何实现笔记的好友关注.以及发布笔记后推送消息功能? 使用Redis 的 好友关注.以及发布笔记后推送消息功能 一.Redis 实现好友关注 – 关注与取消关注 需求:针对用户的操作,可以对用户进行关注和取消关注功能. 在探店图文的详情页面中,可以关注发布笔记的作者 具体实现思路:基于该表数据结构,

  • Spring Boot整合Redis的完整步骤

    前言 实际 开发 中 缓存 处理是必须的,不可能我们每次客户端去请求一次 服务器 ,服务器每次都要去 数据库 中进行查找,为什么要使用缓存?说到底是为了提高系统的运行速度.将用户频繁访问的内容存放在离用户最近,访问速度最 快的 地方,提高用户的响 应速度,今天先来讲下在 springboot 中整合 redis 的详细步骤. 一.Spring Boot对Redis的支持 Spring对Redis的支持是使用Spring Data Redis来实现的,一般使用Jedis或者lettuce(默认),

  • spring boot整合redis实现shiro的分布式session共享的方法

    我们知道,shiro是通过SessionManager来管理Session的,而对于Session的操作则是通过SessionDao来实现的,默认的情况下,shiro实现了两种SessionDao,分别为CachingSessionDAO和MemorySessionDAO,当我们使用EhCache缓存时,则是使用的CachingSessionDAO,不适用缓存的情况下,就会选择基于内存的SessionDao.所以,如果我们想实现基于Redis的分布式Session共享,重点在于重写Session

  • spring boot整合redis主从sentinel方式

    目录 springboot整合redis主从sentinel 一主二从三sentinel配置 新建springboot工程,并加入Redis依赖 工程结构 修改application.properties配置文件 新建Redis服务 测试类 测试结果 redis哨兵模式sentinel与springboot集成 安装Redis集群 springboot整合redis主从sentinel 一主二从三sentinel配置 1.master:127.0.0.1:6379 2.slave1:127.0.

  • Spring Boot整合 NoSQL 数据库 Redis详解

    目录 引言 一.环境准备 二.构建Spring Boot项目 三.引入Redis依赖 四.Reds相关配置 五.添加Redis配置类 六.测试一下 引言 在日常的开发中,除了使用 Spring Boot 这个企业级快速构建项目的框架之外,随着业务数据量的大幅度增加,对元数据库造成的压力成倍剧增.在此背景下, Redis 这个 NoSQL 数据库已然整个项目架构中的不可或缺的一部分,懂得如何 Spring Boot 整合 Redis ,是当今开发人员必备的一项技能,接下来对整合步骤进行详细说明.

  • Spring Boot整合Spring Cache及Redis过程解析

    这篇文章主要介绍了Spring Boot整合Spring Cache及Redis过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.安装redis a.由于官方是没有Windows版的,所以我们需要下载微软开发的redis,网址: https://github.com/MicrosoftArchive/redis/releases b.解压后,在redis根目录打开cmd界面,输入:redis-server.exe redis.wind

  • Spring boot 整合 Redisson实现分布式锁并验证功能

    目录 简述 1. 在idea中新建spring boot工程并引入所需依赖 2. 编写相关代码实现 3. 模拟实际环境验证 3.1 下载idea的docker插件并配置相关镜像信息 3.2 将spring boot打包的jar构建为docker镜像 3.2 配置nginx 3.3 下载安装Jmeter进行测试 简述 整篇文章写的比较粗糙,大佬看了轻喷.前半部分 是整合spring boot和redisson, 后半部分是验证分布式锁.在整个过程中遇见了不少的问题,在此做个记录少走弯路 redis

随机推荐