Go语言底层原理互斥锁的实现原理

目录
  • Go 互斥锁的实现原理?
    • 概念
    • 使用场景
    • 底层实现结构
    • 操作
      • 加锁
      • 解锁
    • Go 互斥锁正常模式和饥饿模式的区别?
      • 正常模式(非公平锁)
      • 饥饿模式(公平锁)
  • Go 互斥锁允许自旋的条件?

Go 互斥锁的实现原理?

Go sync包提供了两种锁类型:互斥锁sync.Mutex 和 读写互斥锁sync.RWMutex,都属于悲观锁。

概念

Mutex是互斥锁,当一个 goroutine 获得了锁后,其他 goroutine 不能获取锁(只能存在一个写者或读者,不能同时读和写)

使用场景

多个线程同时访问临界区,为保证数据的安全,锁住一些共享资源, 以防止并发访问这些共享数据时可能导致的数据不一致问题。

获取锁的线程可以正常访问临界区,未获取到锁的线程等待锁释放后可以尝试获取锁

底层实现结构

互斥锁对应的是底层结构是sync.Mutex结构体,,位于 src/sync/mutex.go中

type Mutex struct {
     state int32
     sema  uint32
 }

state表示锁的状态,有锁定、被唤醒、饥饿模式等,并且是用state的二进制位来标识的,不同模式下会有不同的处理方式

sema表示信号量,mutex阻塞队列的定位是通过这个变量来实现的,从而实现goroutine的阻塞和唤醒

addr = &sema
func semroot(addr *uint32) *semaRoot {
   return &semtable[(uintptr(unsafe.Pointer(addr))>>3)%semTabSize].root
}
root := semroot(addr)
root.queue(addr, s, lifo)
root.dequeue(addr)

var semtable [251]struct {
   root semaRoot
   ...
}

type semaRoot struct {
  lock  mutex
  treap *sudog // root of balanced tree of unique waiters.
  nwait uint32 // Number of waiters. Read w/o the lock.
}

type sudog struct {
    g *g
    next *sudog
    prev *sudog
    elem unsafe.Pointer // 指向sema变量
    waitlink *sudog // g.waiting list or semaRoot
    waittail *sudog // semaRoot
    ...
}

操作

锁的实现一般会依赖于原子操作、信号量,通过atomic 包中的一些原子操作来实现锁的锁定,通过信号量来实现线程的阻塞与唤醒

加锁

通过原子操作cas加锁,如果加锁不成功,根据不同的场景选择自旋重试加锁或者阻塞等待被唤醒后加锁

func (m *Mutex) Lock() {
    // Fast path: 幸运之路,一下就获取到了锁
    if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
        return
    }
    // Slow path:缓慢之路,尝试自旋或阻塞获取锁
    m.lockSlow()
}

解锁

通过原子操作add解锁,如果仍有goroutine在等待,唤醒等待的goroutine

func (m *Mutex) Unlock() {
   // Fast path: 幸运之路,解锁
   new := atomic.AddInt32(&m.state, -mutexLocked)
   if new != 0 {
            // Slow path:如果有等待的goroutine,唤醒等待的goroutine
            m.unlockSlow()
   }
}

注意点:

  • 在 Lock() 之前使用 Unlock() 会导致 panic 异常
  • 使用 Lock() 加锁后,再次 Lock() 会导致死锁(不支持重入),需Unlock()解锁后才能再加锁
  • 锁定状态与 goroutine 没有关联,一个 goroutine 可以 Lock,另一个 goroutine 可以 Unlock

Go 互斥锁正常模式和饥饿模式的区别?

在Go一共可以分为两种抢锁的模式,一种是正常模式,另外一种是饥饿模式

正常模式(非公平锁)

在刚开始的时候,是处于正常模式(Barging),也就是,当一个G1持有着一个锁的时候,G2会自旋的去尝试获取这个锁

自旋超过4次还没有能获取到锁的时候,这个G2就会被加入到获取锁的等待队列里面,并阻塞等待唤醒

正常模式下,所有等待锁的 goroutine 按照 FIFO(先进先出)顺序等待。唤醒的goroutine 不会直接拥有锁,而是会和新请求锁的 goroutine 竞争锁。新请求锁的 goroutine 具有优势:它正在 CPU 上执行,而且可能有好几个,所以刚刚唤醒的 goroutine 有很大可能在锁竞争中失败,长时间获取不到锁,就会切换到饥饿模式

饥饿模式(公平锁)

当一个 goroutine 等待锁时间超过 1 毫秒时,它可能会遇到饥饿问题。 在版本1.9中,这种场景下Go Mutex 切换到饥饿模式(handoff),解决饥饿问题。

starving = runtime_nanotime()-waitStartTime > 1e6

正常模式下,所有等待锁的 goroutine 按照 FIFO(先进先出)顺序等待。唤醒的goroutine 不会直接拥有锁,而是会和新请求锁的 goroutine 竞争锁。新请求锁的 goroutine 具有优势:它正在 CPU 上执行,而且可能有好几个,所以刚刚唤醒的 goroutine 有很大可能在锁竞争中失败,长时间获取不到锁,就会切换到饥饿模式

那么也不可能说永远的保持一个饥饿的状态,总归会有吃饱的时候,也就是总有那么一刻Mutex会回归到正常模式,那么回归正常模式必须具备的条件有以下几种:

  • G的执行时间小于1ms
  • 等待队列已经全部清空了

当满足上述两个条件的任意一个的时候,Mutex会切换回正常模式,而Go的抢锁的过程,就是在这个正常模式和饥饿模式中来回切换进行的。

delta := int32(mutexLocked - 1<<mutexWaiterShift)
if !starving || old>>mutexWaiterShift == 1 {
    delta -= mutexStarving
}
atomic.AddInt32(&m.state, delta)

小结:

对于两种模式,正常模式下的性能是最好的,goroutine 可以连续多次获取锁,饥饿模式解决了取锁公平的问题,但是性能会下降,其实是性能和公平的 一个平衡模式。

Go 互斥锁允许自旋的条件?

线程没有获取到锁时常见有2种处理方式:

  • 一种是没有获取到锁的线程就一直循环等待判断该资源是否已经释放锁,这种锁也叫做自旋锁,它不用将线程阻塞起来, 适用于并发低且程序执行时间短的场景,缺点是cpu占用较高
  • 另外一种处理方式就是把自己阻塞起来,会释放CPU给其他线程,内核会将线程置为「睡眠」状态,等到锁被释放后,内核会在合适的时机唤醒该线程,适用于高并发场景,缺点是有线程上下文切换的开销

Go语言中的Mutex实现了自旋与阻塞两种场景,当满足不了自旋条件时,就会进入阻塞

允许自旋的条件:

  • 锁已被占用,并且锁不处于饥饿模式。
  • 积累的自旋次数小于最大自旋次数(active_spin=4)。
  • cpu 核数大于 1。
  • 有空闲的 P。
  • 当前 goroutine 所挂载的 P 下,本地待运行队列为空。
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
    ...
    runtime_doSpin()
    continue
}

func sync_runtime_canSpin(i int) bool {
    if i >= active_spin
    || ncpu <= 1
    || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
          return false
     }
   if p := getg().m.p.ptr(); !runqempty(p) {
      return false
 }
   return true
}

自旋:

func sync_runtime_doSpin() {
    procyield(active_spin_cnt)
}    

如果可以进入自旋状态之后就会调用 runtime_doSpin 方法进入自旋, doSpin 方法会调用 procyield(30) 执行30次 PAUSE 指令,什么都不做,但是会消耗CPU时间

到此这篇关于Go语言底层原理互斥锁的实现原理的文章就介绍到这了,更多相关Go 互斥锁内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Go语言实现互斥锁、随机数、time、List

    Go语言实现互斥锁.随机数.time.List import ( "container/list" "fmt" "math/rand" //备注2:随机数的包 "sync" //备注1:异步任务的包 "time" ) type INFO struct { lock sync.Mutex //备注1:异步锁 Name string Time int64 } var List *list.List = list

  • Go语言并发编程之互斥锁Mutex和读写锁RWMutex

    目录 一.互斥锁Mutex 1.Mutex介绍 2.Mutex使用实例 二.读写锁RWMutex 1.RWMutex介绍 2.RWMutex使用实例 在并发编程中,多个Goroutine访问同一块内存资源时可能会出现竞态条件,我们需要在临界区中使用适当的同步操作来以避免竞态条件.Go 语言中提供了很多同步工具,本文将介绍互斥锁Mutex和读写锁RWMutex的使用方法. 一.互斥锁Mutex 1.Mutex介绍 Go 语言的同步工具主要由 sync 包提供,互斥锁 (Mutex) 与读写锁 (R

  • Go语言原子操作及互斥锁的区别

    目录 增或减 比较并交换(Compare And Swap) 载入与存储 交换 原子值 原子操作与互斥锁的区别 原子操作就是不可中断的操作,外界是看不到原子操作的中间状态,要么看到原子操作已经完成,要么看到原子操作已经结束.在某个值的原子操作执行的过程中,CPU绝对不会再去执行其他针对该值的操作,那么其他操作也是原子操作. Go语言中提供的原子操作都是非侵入式的,在标准库代码包sync/atomic中提供了相关的原子函数. 增或减 用于增或减的原子操作的函数名称都是以"Add"开头的,

  • Go 互斥锁和读写互斥锁的实现

    目录 互斥锁 读写互斥锁 先来看这样一段代码,所存在的问题: var wg sync.WaitGroup var x int64 func main() { wg.Add(2) go f() go f() wg.Wait() fmt.Println(x) // 输出:12135 } func f() { for i:=0;i<10000;i++ { x = x+1 } wg.Done() } 这里为什么输出是 12135(不同的机器结果不一样),而不是20000. 因为 x 的赋值,总共分为三个

  • Go语言线程安全之互斥锁与读写锁

    目录 一.互斥锁是什么? 1.概念 2.未加锁 3.加锁之后 二.读写锁[效率革命] 1.为什么读写锁效率高 2.使用方法 三.sync.once 1.sync.once产生背景 2.sync.once机制概述 3.sync.once注意点 4.使用方法 四.atomic原子包操作 前言: 单个线程时数据操作的只有一个线程,数据的修改也只有一个线程参与,数据相对来说是安全的,多线程时对数据操作的不止一个线程,所以同时对数据进行修改的时候难免紊乱 一.互斥锁是什么? 1.概念 互斥锁是为了并发的安

  • Go语言的互斥锁的详细使用

    目录 前言 Go语言互斥锁设计实现 mutex介绍 Lock加锁 初始化状态 自旋 抢锁准备期望状态 通过CAS操作更新期望状态 解锁 非阻塞加锁 总结 前言 当提到并发编程.多线程编程时,都会在第一时间想到锁,锁是并发编程中的同步原语,他可以保证多线程在访问同一片内存时不会出现竞争来保证并发安全:在Go语言中更推崇由channel通过通信的方式实现共享内存,这个设计点与许多主流编程语言不一致,但是Go语言也在sync包中提供了互斥锁.读写锁,毕竟channel也不能满足所有场景,互斥锁.读写锁

  • GO语言并发编程之互斥锁、读写锁详解

    在本节,我们对Go语言所提供的与锁有关的API进行说明.这包括了互斥锁和读写锁.我们在第6章描述过互斥锁,但却没有提到过读写锁.这两种锁对于传统的并发程序来说都是非常常用和重要的. 一.互斥锁 互斥锁是传统的并发程序对共享资源进行访问控制的主要手段.它由标准库代码包sync中的Mutex结构体类型代表.sync.Mutex类型(确切地说,是*sync.Mutex类型)只有两个公开方法--Lock和Unlock.顾名思义,前者被用于锁定当前的互斥量,而后者则被用来对当前的互斥量进行解锁. 类型sy

  • GO语言协程互斥锁Mutex和读写锁RWMutex用法实例详解

    sync.Mutex Go中使用sync.Mutex类型实现mutex(排他锁.互斥锁).在源代码的sync/mutex.go文件中,有如下定义: // A Mutex is a mutual exclusion lock. // The zero value for a Mutex is an unlocked mutex. // // A Mutex must not be copied after first use. type Mutex struct { state int32 sem

  • Go语言并发编程 互斥锁详情

    目录 1.互斥锁Mutex 1.1 Mutex介绍 1.2 Mutex使用实例 2.读写锁RWMutex 2.1 RWMutex介绍 2.2 RWMutex使用实例 1.互斥锁Mutex 1.1 Mutex介绍 Go 语言的同步工具主要由 sync 包提供,互斥锁 (Mutex) 与读写锁 (RWMutex) 就是sync 包中的方法. 互斥锁可以用来保护一个临界区,保证同一时刻只有一个 goroutine 处于该临界区内.主要包括锁定(Lock方法)和解锁(Unlock方法)两个操作,首先对进

  • Go语言底层原理互斥锁的实现原理

    目录 Go 互斥锁的实现原理? 概念 使用场景 底层实现结构 操作 加锁 解锁 Go 互斥锁正常模式和饥饿模式的区别? 正常模式(非公平锁) 饥饿模式(公平锁) Go 互斥锁允许自旋的条件? Go 互斥锁的实现原理? Go sync包提供了两种锁类型:互斥锁sync.Mutex 和 读写互斥锁sync.RWMutex,都属于悲观锁. 概念 Mutex是互斥锁,当一个 goroutine 获得了锁后,其他 goroutine 不能获取锁(只能存在一个写者或读者,不能同时读和写) 使用场景 多个线程

  • python并发编程多进程 互斥锁原理解析

    运行多进程 每个子进程的内存空间是互相隔离的 进程之间数据不能共享的 互斥锁 但是进程之间都是运行在一个操作系统上,进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端, 是可以的,而共享带来的是竞争,竞争带来的结果就是错乱 #并发运行,效率高,但竞争同一打印终端,带来了打印错乱 from multiprocessing import Process import time def task(name): print("%s 1" % name) time.

  • Java synchronized轻量级锁的核心原理详解

    目录 1.轻量级锁的原理 2.轻量级锁的分类 1.普通自旋锁 2.自适应自旋锁 3.轻量级锁的膨胀 总结 问题: 什么是自旋锁? 说一下 synchronized 底层实现原理? 多线程中 synchronized 锁升级的原理是什么? 1. 轻量级锁的原理 引入轻量级锁的主要目的是在多线程竞争不激烈的情况下,通过CAS机制竞争锁减少重量级锁产生的性能损耗.重量级锁使用了操作系统底层的互斥锁(Mutex Lock),会导致线程在用户态和核心态之间频繁切换,从而带来较大的性能损耗. 轻量级锁的使用

  • GoLang中的互斥锁Mutex和读写锁RWMutex使用教程

    目录 一.竞态条件与临界区和同步工具 (1)竞态条件 (2)临界区 (3)同步工具 二.互斥量 三.使用互斥锁的注意事项 (1)使用互斥锁的注意事项 (2)使用defer语句解锁 (3)sync.Mutex是值类型 四.读写锁与互斥锁的异同 (1)读/写互斥锁 (2)读写锁规则 (3)解锁读写锁 一.竞态条件与临界区和同步工具 (1)竞态条件 一旦数据被多个线程共享,那么就会产生冲突和争用的情况,这种情况被称为竞态条件.这往往会破坏数据的一致性. 同步的用途有两个,一个是避免多线程在同一时刻操作

  • Java synchronized底层实现原理以及锁优化

    目录 一.概述 synchronized简介 synchronized作用 synchronized的使用 二.实现原理 三.理解Java对象头 四.JVM对synchronized的锁优化 1.偏向锁 2.轻量级锁 3.重量级锁 4.自旋锁 5.锁消除 6.锁粗化 总结 一.概述 synchronized简介 在多线程并发编程中 synchronized 一直是元老级角色,很多人都会称呼它为重量级锁.但是,随着 Java SE 1.6 对synchronized 进行了各种优化之后,有些情况下

  • 一文掌握Go语言并发编程必备的Mutex互斥锁

    目录 1. Mutex 互斥锁的基本概念 2. Mutex 互斥锁的基本用法 3. Mutex 互斥锁的底层实现 3.1 等待队列 3.2 锁状态 4. Mutex 互斥锁的注意事项 4.1 不要将 Mutex 作为函数或方法的参数传递 4.2 不要在获取 Mutex 的锁时阻塞太久 4.3 不要重复释放 Mutex 的锁 4.4 不要在锁内部执行阻塞或耗时操作 5. 总结 在并发编程中,我们需要处理多个线程同时对共享资源的访问问题.如果不加控制地同时访问共享资源,就会导致竞争条件(Race C

随机推荐