C++ 智能指针深入解析

1. 为什么需要智能指针?
简单的说,智能指针是为了实现类似于Java中的垃圾回收机制。Java的垃圾回收机制使程序员从繁杂的内存管理任务中彻底的解脱出来,在申请使用一块内存区域之后,无需去关注应该何时何地释放内存,Java将会自动帮助回收。但是出于效率和其他原因(可能C++设计者不屑于这种傻瓜氏的编程方式),C++本身并没有这样的功能,其繁杂且易出错的内存管理也一直为广大程序员所诟病。

更进一步地说,智能指针的出现是为了满足管理类中指针成员的需要。包含指针成员的类需要特别注意复制控制和赋值操作,原因是复制指针时只复制指针中的地址,而不会复制指针指向的对象。当类的实例在析构的时候,可能会导致垂悬指针问题。

管理类中指针成员的方法一般有两种方式:一种是采用值型类,这种类是给指针成员提供值语义(value semantics),当复制该值型对象时,会得到一个不同的新副本。这种方式典型的应用是string类。另外一种方式就是智能指针,实现这种方式的指针所指向的对象是共享的。

2. 智能指针的实现概述
智能指针(smart pointer)的一种通用实现技术是使用引用计数(reference count)。智能指针类将一个计数器与类指向的对象相关联,引用计数跟踪该类有多少个对象共享同一指针。
每次创建类的新对象时,初始化指针并将引用计数置为1;当对象作为另一对象的副本而创建时,拷贝构造函数拷贝指针并增加与之相应的引用计数;对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果引用计数为减至0,则删除对象),并增加右操作数所指对象的引用计数;调用析构函数时,构造函数减少引用计数(如果引用计数减至0,则删除基础对象)。
实现智能指针有两种经典策略:一是引入辅助类,二是使用句柄类。

3. 实现方式1:引入辅助类
这种方式定义一个单独的具体类(RefPtr)来封装指针和相应的引用计数。


代码如下:

class Point                                       //基础对象类
{
public:
     Point(int xVal = 0, int yVal = 0):x(xVal),y(yVal) { }
     int getX() const { return x; }
     int getY() const { return y; }
     void setX(int xVal) { x = xVal; }
     void setY(int yVal) { y = yVal; }

private:
     int x,y;
};
class RefPtr                                  //辅助类
{    //该类成员访问权限全部为private,因为不想让用户直接使用该类
     friend class SmartPtr;                                  //定义智能指针类为友元,因为智能指针类需要直接操纵辅助类
     RefPtr(Point *ptr):p(ptr), count(1) { }
     ~RefPtr() { delete p; }
     int count;                                                     //引用计数
     Point *p;                                                      //基础对象指针
};
class SmartPtr                                             //智能指针类
{
public:
     SmartPtr(Point *ptr):rp(new RefPtr(ptr)) { }                                 //构造函数
     SmartPtr(const SmartPtr &sp):rp(sp.rp) { ++rp->count; }            //复制构造函数
     SmartPtr& operator=(const SmartPtr& rhs) {                              //重载赋值操作符
     ++rhs.rp->count;                                                                        //首先将右操作数引用计数加1,
     if(--rp->count == 0)                                                                     //然后将引用计数减1,可以应对自赋值
        delete rp;
     rp = rhs.rp;
     return *this;
     }
    ~SmartPtr() {                                            //析构函数
    if(--rp->count == 0)                                  //当引用计数减为0时,删除辅助类对象指针,从而删除基础对象
         delete rp;
 }
private:
     RefPtr *rp;                                                //辅助类对象指针
};
int main()
{
     Point *p1 = new Point(10, 8);
     SmartPtr sp1(p1);
     SmartPtr sp2(sp1);
     Point *p2 = new Point(5, 5);
     SmartPtr sp3(p2);
     sp3 = sp1;
     return 0;
}

使用该方式的内存结构图如下:

4. 实现方式2:使用句柄类
为了避免上面方案中每个使用指针的类自己去控制引用计数,可以用一个类把指针封装起来。封装好后,这个类对象可以出现在用户类使用指针的任何地方,表现为一个指针的行为。我们可以像指针一样使用它,而不用担心普通成员指针所带来的问题,我们把这样的类叫句柄类。在封装句柄类时,需要申请一个动态分配的引用计数空间,指针与引用计数分开存储。实现示例如下:


代码如下:

class Point                                                  //基础对象类
{
public:
     Point(int xVal = 0, int yVal = 0):x(xVal),y(yVal) { }
     int getX() const { return x; }
     int getY() const { return y; }
     void setX(int xVal) { x = xVal; }
     void setY(int yVal) { y = yVal; }
public:
     virtual Point* clone() const {               //虚函数,为了实现让句柄类在不知道对象的确切类型的情况下分配已知对象的新副本
     return new Point(*this);
 }

private:
     int x,y;
};
class D3Point : public Point                           //派生类
{
public:
     D3Point(int xVal, int yVal, int zVal):Point(xVal, yVal), z(zVal) { }
     int getZ() const { return z; }
     void setZ(int zVal) { z = zVal; }
public:
     D3Point* clone() const {                 //虚函数,为了实现让句柄类在不知道对象的确切类型的情况下分配已知对象的新副本
  return new D3Point(*this);
 }
private:
     int z;
};
class SmartPtr
{
public:
     SmartPtr(Point *ptr = 0):p(ptr), count(new int(1)) { }                                         //构造函数
     SmartPtr(Point &point):p(point.clone()), count(new int(1)) { }                          //构造函数
     SmartPtr(const SmartPtr &sp):p(sp.p), count(sp.count) { ++*count; }             //复制构造函数
     SmartPtr& operator=(const SmartPtr &sp) {                                                   //重载赋值操作符
         ++*sp.count;                                           //首先将右操作数引用计数加1,
         decr_use();                                             //然后将引用计数减1,可以应对自赋值
         p = sp.p;
         count = sp.count;
         return *this;
     }
    ~SmartPtr() {                                          //析构函数
          decr_use();
     }
public:                                   //一般情况下不会实现这两个操作符,因为我们不希望用户直接操纵基础对象指针
     const Point* operator->() const {
          if(p) return p;
          else throw logic_error("Unbound Point");
     }
 const Point& operator*() const {
      if(p) return *p;
      else throw logic_error("Unbound Point");
     }
private:
    void decr_use() {
        if(--*count == 0)
        {
             delete p;
             delete count;
       }
    }
private:
     Point *p;                                      //基础对象指针
     int *count;                                   //指向引用计数的指针
};
int main()
{
      Point *p1 = new Point(10, 8);
      SmartPtr sp1(p1);
      SmartPtr sp2(sp1);
      D3Point *p2 = new D3Point(5, 5, 0);
      SmartPtr sp3(p2);
      return 0;
}

使用该方式的内存结构图如下:

(0)

相关推荐

  • C++中的auto_ptr智能指针的作用及使用方法详解

    智能指针(auto_ptr) 这个名字听起来很酷是不是?其实auto_ptr 只是C++标准库提供的一个类模板,它与传统的new/delete控制内存相比有一定优势,但也有其局限.本文总结的8个问题足以涵盖auto_ptr的大部分内容.  auto_ptr是什么? auto_ptr 是C++标准库提供的类模板,auto_ptr对象通过初始化指向由new创建的动态内存,它是这块内存的拥有者,一块内存不能同时被分给两个拥有者.当auto_ptr对象生命周期结束时,其析构函数会将auto_ptr对象拥

  • C++ 智能指针的模拟实现实例

    C++ 智能指针的模拟实现实例 1.引入 int main() { int *p = new int; //裸指针 delete p; return 0; } 在上面的代码中定义了一个裸指针p,需要我们手动释放.如果我们一不小心忘记释放这个指针或者在释放这个指针之前,发生一些异常,会造成严重的后果(内存泄露).而智能指针也致力于解决这种问题,使程序员专注于指针的使用而把内存管理交给智能指针. 普通指针也容易出现指针悬挂问题,当有多个指针指向同一个对象的时候,如果某一个指针delete了这个对象,

  • C++ 中boost::share_ptr智能指针的使用方法

    C++ 中boost::share_ptr智能指针的使用方法 最近项目中使用boost库的智能指针,感觉智能指针还是蛮强大的,在此贴出自己学习过程中编写的测试代码,以供其他想了解boost智能指针的朋友参考,有讲得不正确之处欢迎指出讨论.当然,使用boost智能指针首先要编译boost库,具体方法可以网上查询,在此不再赘述. 智能指针能够使C++的开发简单化,主要是它能够自动管理内存的释放,而且能够做更多的事情,即使用智能指针,则可以再代码中new了之后不用delete,智能指针自己会帮助你管理

  • C++中智能指针如何设计和使用

    智能指针(smart pointer)是存储指向动态分配(堆)对象指针的类,用于生存期控制,能够确保自动正确的销毁动态分配的对象,防止内存泄露.它的一种通用实现技术是使用引用计数(reference count).智能指针类将一个计数器与类指向的对象相关联,引用计数跟踪该类有多少个对象共享同一指针.每次创建类的新对象时,初始化指针并将引用计数置为1:当对象作为另一对象的副本而创建时,拷贝构造函数拷贝指针并增加与之相应的引用计数:对一个对象进行赋值时,赋值操作符减少左操作数所指对象的引用计数(如果

  • C++智能指针读书笔记

    最近在补看<C++ Primer Plus>第六版,这的确是本好书,其中关于智能指针的章节解析的非常清晰,一解我以前的多处困惑.C++面试过程中,很多面试官都喜欢问智能指针相关的问题,比如你知道哪些智能指针?shared_ptr的设计原理是什么?如果让你自己设计一个智能指针,你如何完成?等等--.而且在看开源的C++项目时,也能随处看到智能指针的影子.这说明智能指针不仅是面试官爱问的题材,更是非常有实用价值. C++通过一对运算符 new 和 delete 进行动态内存管理,new在动态内存中

  • C++智能指针shared_ptr分析

    C++智能指针shared_ptr分析 概要: shared_ptr是c++智能指针中适用场景多,功能实现较多的智能指针.它采取引用计数的方法来实现释放指针所指向的资源.下面是我代码实现的基本功能. 实例代码: template<class T> class sharedptr { public: sharedptr(T* ptr) :_ptr(ptr) , _refCount(new int(1)) {} sharedptr(sharedptr<T>& sp) :_ptr

  • 关于c++ 智能指针及 循环引用的问题

    c++智能指针介绍 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete,比如流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 delete 的情况并不罕见,并造成内存泄露.如此c++引入 智能指针 ,智能指针即是C++ RAII的一种应用,可用于动态资源管理,资源即对象的管理策略. 智能指针在 <memory>标头文件的 std 命名空间中定义. 它们对 RAII 或 获取资源即初始化 编程惯用法至关重要. RAII 的主要原则是

  • C++中auto_ptr智能指针的用法详解

    智能指针(auto_ptr) 这个名字听起来很酷是不是?其实auto_ptr 只是C++标准库提供的一个类模板,它与传统的new/delete控制内存相比有一定优势,但也有其局限.本文总结的8个问题足以涵盖auto_ptr的大部分内容. auto_ptr是什么? auto_ptr 是C++标准库提供的类模板,auto_ptr对象通过初始化指向由new创建的动态内存,它是这块内存的拥有者,一块内存不能同时被分给两个拥有者.当auto_ptr对象生命周期结束时,其析构函数会将auto_ptr对象拥有

  • C++11新特性之智能指针(shared_ptr/unique_ptr/weak_ptr)

    shared_ptr基本用法 shared_ptr采用引用计数的方式管理所指向的对象.当有一个新的shared_ptr指向同一个对象时(复制shared_ptr等),引用计数加1.当shared_ptr离开作用域时,引用计数减1.当引用计数为0时,释放所管理的内存. 这样做的好处在于解放了程序员手动释放内存的压力.之前,为了处理程序中的异常情况,往往需要将指针手动封装到类中,通过析构函数来释放动态分配的内存:现在这一过程就可以交给shared_ptr去做了. 一般我们使用make_shared来

  • C++智能指针实例详解

    本文通过实例详细阐述了C++关于智能指针的概念及用法,有助于读者加深对智能指针的理解.详情如下: 一.简介 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete.程序员忘记 delete,流程太复杂,最终导致没有 delete,异常导致程序过早退出,没有执行 delete 的情况并不罕见. 用智能指针便可以有效缓解这类问题,本文主要讲解参见的智能指针的用法.包括:std::auto_ptr.boost::scoped_ptr.boost::shared_p

随机推荐