Python 深入理解yield

只是粗略的知道yield可以用来为一个函数返回值塞数据,比如下面的例子:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->def addlist(alist):
    for i in alist:
        yield i + 1
取出alist的每一项,然后把i + 1塞进去。然后通过调用取出每一项:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->alist = [1, 2, 3, 4]
for x in addlist(alist):
    print x,
这的确是yield应用的一个例子,但是,看过limodou的文章《2.5版yield之学习心得》,并自己反复体验后,对yield有了一个全新的理解。

1. 包含yield的函数

假如你看到某个函数包含了yield,这意味着这个函数已经是一个Generator,它的执行会和其他普通的函数有很多不同。比如下面的简单的函数:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->def h():
    print 'To be brave'
    yield 5

h()
可以看到,调用h()之后,print 语句并没有执行!这就是yield,那么,如何让print 语句执行呢?这就是后面要讨论的问题,通过后面的讨论和学习,就会明白yield的工作原理了。

2. yield是一个表达式

Python2.5以前,yield是一个语句,但现在2.5中,yield是一个表达式(Expression),比如:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->m = yield 5
表达式(yield 5)的返回值将赋值给m,所以,认为 m = 5 是错误的。那么如何获取(yield 5)的返回值呢?需要用到后面要介绍的send(msg)方法。

3. 透过next()语句看原理

现在,我们来揭晓yield的工作原理。我们知道,我们上面的h()被调用后并没有执行,因为它有yield表达式,因此,我们通过next()语句让它执行。next()语句将恢复Generator执行,并直到下一个yield表达式处。比如:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->def h():
    print 'Wen Chuan'
    yield 5
    print 'Fighting!'

c = h()
c.next()
c.next()调用后,h()开始执行,直到遇到yield 5,因此输出结果:
Wen Chuan
当我们再次调用c.next()时,会继续执行,直到找到下一个yield表达式。由于后面没有yield了,因此会拋出异常:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->Wen Chuan
Fighting!
Traceback (most recent call last):
  File "/home/evergreen/Codes/yidld.py", line 11, in <module>
    c.next()
StopIteration

4. send(msg) 与 next()

了解了next()如何让包含yield的函数执行后,我们再来看另外一个非常重要的函数send(msg)。其实next()和send()在一定意义上作用是相似的,区别是send()可以传递yield表达式的值进去,而next()不能传递特定的值,只能传递None进去。因此,我们可以看做
c.next() 和 c.send(None) 作用是一样的。
来看这个例子:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->def h():
    print 'Wen Chuan',
    m = yield 5  # Fighting!
    print m
    d = yield 12
    print 'We are together!'

c = h()
c.next()  #相当于c.send(None)
c.send('Fighting!')  #(yield 5)表达式被赋予了'Fighting!'
输出的结果为:
Wen Chuan Fighting!
需要提醒的是,第一次调用时,请使用next()语句或是send(None),不能使用send发送一个非None的值,否则会出错的,因为没有yield语句来接收这个值。

5. send(msg) 与 next()的返回值

send(msg) 和 next()是有返回值的,它们的返回值很特殊,返回的是下一个yield表达式的参数。比如yield 5,则返回 5 。到这里,是不是明白了一些什么东西?本文第一个例子中,通过for i in alist 遍历 Generator,其实是每次都调用了alist.Next(),而每次alist.Next()的返回值正是yield的参数,即我们开始认为被压进去的东东。我们再延续上面的例子:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->def h():
    print 'Wen Chuan',
    m = yield 5  # Fighting!
    print m
    d = yield 12
    print 'We are together!'

c = h()
m = c.next()  #m 获取了yield 5 的参数值 5
d = c.send('Fighting!')  #d 获取了yield 12 的参数值12
print 'We will never forget the date', m, '.', d
输出结果:
Wen Chuan Fighting!
We will never forget the date 5 . 12

6. throw() 与 close()中断 Generator

中断Generator是一个非常灵活的技巧,可以通过throw抛出一个GeneratorExit异常来终止Generator。Close()方法作用是一样的,其实内部它是调用了throw(GeneratorExit)的。我们看:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->def close(self):
    try:
        self.throw(GeneratorExit)
    except (GeneratorExit, StopIteration):
        pass
    else:
        raise RuntimeError("generator ignored GeneratorExit")
# Other exceptions are not caught
因此,当我们调用了close()方法后,再调用next()或是send(msg)的话会抛出一个异常:

Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/

-->Traceback (most recent call last):
  File "/home/evergreen/Codes/yidld.py", line 14, in <module>
    d = c.send('Fighting!')  #d 获取了yield 12 的参数值12
StopIteration

注:以上观点属于本人的个人理解,如有偏差请批评指正。谢谢!

(0)

相关推荐

  • 浅谈对yield的初步理解

    如下所示: def go(): while True: data = 1 r = yield data # data是返回值,r是接收值 print("data", data) print("A1", r) data += 1 r = yield data print("data",data) r += r print("A2", r) data += 1 r = yield data print("data&quo

  • Python yield 小结和实例

    一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行.虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行.看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值. yield

  • Python 深入理解yield

    只是粗略的知道yield可以用来为一个函数返回值塞数据,比如下面的例子: Code highlighting produced by Actipro CodeHighlighter (freeware) http://www.CodeHighlighter.com/ -->def addlist(alist):    for i in alist:        yield i + 1取出alist的每一项,然后把i + 1塞进去.然后通过调用取出每一项: Code highlighting p

  • 深入浅析Python中的yield关键字

    前言 python中有一个非常有用的语法叫做生成器,所利用到的关键字就是yield.有效利用生成器这个工具可以有效地节约系统资源,避免不必要的内存占用. 一段代码 def fun(): for i in range(20): x=yield i print('good',x) if __name__ == '__main__': a=fun() a.__next__() x=a.send(5) print(x) 这段代码很短,但是诠释了yield关键字的核心用法,即逐个生成.在这里获取了两个生成

  • 基于Python中的yield表达式介绍

    python生成器 python中生成器是迭代器的一种,使用yield返回函数值.每次调用yield会暂停,而可以使用next()函数和send()函数可以恢复生成器. 这里可以参考Python函数式编程指南:对生成器全面讲解 注意到yield是个表达式而不仅仅是个语句,所以可以使用x = yield r 这样的语法. 这个知识点在协程中需要使用.协程的概念指的是在一个线程内,一个程序中断去执行另一个程序,有点类似于CPU中断.这样减少了切换线程带来的负担,同时不需要多线程中的锁机制,因为不存在

  • Python协程 yield与协程greenlet简单用法示例

    本文实例讲述了Python协程 yield与协程greenlet简单用法.分享给大家供大家参考,具体如下: 协程 协程,又称微线程,纤程.英文名Coroutine. 协程是啥 协程是python个中另外一种实现多任务的方式,只不过比线程更小占用更小执行单元(理解为需要的资源). 为啥说它是一个执行单元,因为它自带CPU上下文.这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程. 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的. 通俗的理解:在一个线程中的某个函数,可以在任

  • Python 中由 yield 实现异步操作

    yield在python中初学时,觉得比较难理解.yield的作用: ①返回一个值.②接收调用者的参数 分析下面的代码: #!/usr/bin/env python3 # -*- coding:utf-8 -*- def consumer(): r = '' while True: n = yield r print("[Consumer] n = %d" %n) if not n: return print("[Consumer] consuming %s..."

  • Python 列表理解及使用方法

    Python 列表理解及使用方法 列表是最常用的Python最常用的数据类型,它和其它序列一样,可以进行包括索引,切片,加,乘,检查成员的操作.列表的数据项不需要具有相同的类型,将数据项放在方括号内,中间用逗号隔开,如: list1 = ['test',3,4] 下面将学习的列表相关方法总结了一下,留待以后查看. 1.append append方法用于在列表末尾追加新的对象: >>> lst = [1,2,3] >>> lst.append(4) >>>

  • python中的yield使用方法

    今天在看其他同事的代码时,发现一个没使用过的python关键字 :yield 先问了一下同事,听他说了几句,有个模糊的印象,仅仅是模糊而已.于是自己去搜搜资料看.看了半天,逐渐清晰了.不过在工作机制以及应用上还是有点迷茫.嗯,先把初始接触的印象记下来吧. yield 简单说来就是一个生成器(Generator).生成器是这样一个函数:它记住上一次返回时在函数体中的位置.对生成器函数的第二次(或第 n 次)调用跳转至该函数中间,而上次调用的所有局部变量都保持不变. 你看到某个函数包含了yield,

  • python中的yield from语法快速学习

    协程是什么?可能很多人不清楚,所以我们先从其中的yield from开始讲解. yield from 用法详解: yield from 是在Python3.3才出现的语法.所以这个特性在Python2中是没有的. yield from 后面需要加的是可迭代对象,它可以是普通的可迭代对象,也可以是迭代器,甚至是生成器. 简单应用:拼接可迭代对象 我们可以用一个使用yield和一个使用yield from的例子来对比看下. 使用yield <p style="line-height: 1.75

  • python生成器和yield关键字(完整代码)

    下列代码用于先体验普通列表推导式和生成器的差别: # def add(): #     temp = ["姓名", "学号", "班级", "电话"] #     dic = {} #     lst = [] #     for item in temp: #         inp = input("请输入{}:".format(item)) #         if inp == "exit

  • 彻底理解Python中的yield关键字

    阅读别人的python源码时碰到了这个yield这个关键字,各种搜索终于搞懂了,在此做一下总结: 通常的for...in...循环中,in后面是一个数组,这个数组就是一个可迭代对象,类似的还有链表,字符串,文件.它可以是mylist = [1, 2, 3],也可以是mylist = [x*x for x in range(3)].它的缺陷是所有数据都在内存中,如果有海量数据的话将会非常耗内存. 生成器是可以迭代的,但只可以读取它一次.因为用的时候才生成.比如 mygenerator = (x*x

随机推荐