深入内存对齐的详解

1.引子

在结构中,编译器为结构的每个成员按其自身的自然对界(alignment)条件分配空间。各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个结构的地址相同。

例如,下面的结构各成员空间分配情况(假设对齐方式大于2字节,即#pragma pack(n), n = 2,4,8...下文将讨论#pragmapack()):


代码如下:

struct test
{
     char x1;
     short x2;
     float x3;
     char x4;
};

结构的第一个成员x1,其偏移地址为0,占据了第1个字节。第二个成员x2为short类型,其起始地址必须2字节对界,即偏移地址是2的倍数。因此,编译器在x2和x1之间填充了一个空字节,将x2放在了偏移地址为2的位置。结构的第三个成员x3和第四个成员x4恰好落在其自然对界地址上,在它们前面不需要额外的填充字节。在test结构中,成员x3要求4字节对界,是该结构所有成员中要求的最大对界单元,因而test结构的自然对界条件为4字节,整个结构体的大小是最大对界单元大小的整数倍(结构体内部有结构体时也遵循这个规则,下文将提到),编译器在成员x4后面填充了3个空字节。整个结构所占据空间为12字节。
    关于为什么要内存对齐,参考<解析内存对齐 Data alignment: Straighten up and fly right的详解>。看了这篇文章便可以更轻松的理解下面的内容。

好了,下面说说#pragma pack:

2.#pragma pack()

该预处理指令用来改变对齐参数。在缺省情况下,C编译器为每一个变量或数据单元按其自然对界条件分配空间。一般地,可以通过下面的方法来改变缺省的对齐参数:

· 使用伪指令#pragma pack (n),C编译器将按照n字节对齐。

· 使用伪指令#pragma pack (),取消自定义字节对齐方式。

也可以写成:

#pragma pack(push,n)

#pragma pack(pop)

#pragma pack (n)表示每个成员的对齐单元不大于n(n为2的整数次幂)。这里规定的是上界,只影响对齐单元大于n的成员,对于对齐字节不大于n的成员没有影响。其实从字面意思,pack是“包裹,打包”的意思,#pragma pack(n)规定n个字节是一个“包裹”,个人认为实在不理解的话可以认为处理器一次性可以从内存中读/写n个字节,这样好理解。对于大小小于n的成员,当然是按照自己的对齐条件对齐,因为不论怎么放都可以一次性取出。对于对齐条件大于n个字节的成员,成员按照自身的对齐条件对齐和按照n字节对齐需要相同的读取次数,但按照n字节对齐节省空间,何乐而不为呢。可以参考我上面提到的<解析内存对齐 Data alignment: Straighten up and fly right的详解>。下面是一位大牛的观点,和我说的是一个意思:

All it means is that each member of it will require alignment no greater than n.It doesn't mean that each member will have alignment requirement n.Notice, after all, it's called pack and not align for a reason-- precisely because it controls packing, not alignment.

另外,GNU C还有如下的一种方式:

· __attribute__((aligned (n))),让所作用的结构成员对齐在n字节自然边界上。如果结构中有成员的长度大于n,则按照最大成员的长度来对齐。

· __attribute__ ((packed)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。

以上的n = 1, 2, 4, 8, 16... 第一种方式较为常见。

3.结构体内成员如何找出自己的位置

首先遵循以下规则:

1.  每个成员分别取自己的对齐方式和#pragma pack指定的对齐参数二者的较小值作为自己的对齐方式。

2.  复杂类型(如结构)的对齐方式是该类型声明时所使用的对齐方式,或者说是声明时它的所有成员使用的对齐参数的最大值,最后和此时的#pragma pack指定的对齐参数二者取极小值。大牛是这么说的:

The documentation for #pragma pack(n) says that "The alignment of a member will be on a boundary that is either a multiple of n or a multiple of the size of the member,whichever is smaller". However I think this is incorrect; the docs should say that the alignment of a member will be on a boundary that is either a multiple of n or the alignment requirement of the member, whichever is smaller.

3.  对齐后的长度必须是成员中最大的对齐参数(不是成员的大小)的整数倍,这样在处理数组时可以保证每一项都边界对齐。

4.  对于数组,比如:char a[3];这种,它的对齐方式和分别写3个char是一样的。也就是说它还是按1个字节对齐.

如果写: typedef char Array3[3];

Array3这种类型的对齐方式还是按1个字节对齐,而不是按它的长度。

5.  不论类型是什么,对齐的边界一定是1,2,4,8,16,32,64....中的一个。

看一个简单的例子:


代码如下:

#pragma pack(8)
struct s1
{
    short a;
    long b;
};
struct s2
{
    char c;
    s1 d;
    long long e;
};
#pragma pack()

成员对齐有一个重要的条件:每个成员分别对齐。即每个成员按自己的方式对齐.

也就是说上面虽然指定了按8字节对齐,但并不是所有的成员都是以8字节对齐。其对齐的规则是,每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数(这里是8字节)中较小的一个对齐。并且结构的长度必须为所用过的所有对齐参数的整数倍(只要是最大的对齐参数的整数倍即可),不够就补空字节(视编译器而定)。

S1中,成员a是2字节默认按2字节对齐,指定对齐参数为8,这两个值中取2,a按2字节对齐;成员b是4个字节,默认是按4字节对齐,这时就按4字节对齐,a后补2个字节后存放b,所以sizeof(S1)应该为8。8是4的倍数,满足上述的第3条规则。

S2中,c和S1中的a一样,按2字节对齐,而d是个结构,它是8个字节,它按什么对齐呢?对于结构来说,它的默认对齐方式就是该结构定义(声明)时它的所有成员使用的对齐参数中最大的一个,S1的是4,小于指定的8。所以成员d就是按4字节对齐,c后补2个字节,后面是8个字节的结构体d。成员e是8个字节,它是默认按8字节对齐,和指定的一样,所以它对到8字节的边界上,这时,已经使用了12个字节了,所以d后又补上4个字节,从第16个字节开始放置成员e。这时,长度为24,已经可以被最大对齐参数8(成员e按8字节对齐)整除。这样,一共使用了24个字节。

上面的不够复杂?再来一个:


代码如下:

#pragma pack(4)
struct s1
{
    char a;
    double b;
};
#pragma pack()

#pragma pack(2)
struct s2
{
    char c;
    struct s1 st1;
};
#pragma pack()

#pragma pack(2)
struct s3
{
    char a;
    long b;
};
#pragma pack()

#pragma pack(4)
struct s4
{
    char c;
    struct s3 st3;
};
#pragma pack()

先看s1,a放在偏移地址为0的位置(第一个字节)。b默认8字节对齐,但指定对齐参数是4字节,所以b按4字节对齐,放在偏移地址为4的位置,a后补3个字节。所以sizeof(s1)是12。结构体s1的对齐参数是4,下面会用到。

再看s2,c放在第一个字节。st1自己的对齐参数是4,但此时指定的对齐参数是2,所以st1按照2字节对齐,c后补一个字节后存放st1。注意,st1内部是不会变的,声明s1时是什么样就是什么样,因为我们要保证sizeof(s2.st1) == sizeof(s1),如果不这样就乱套了。这样sizeof(s2)是14。结构体s2的对齐参数是2,14是2的整数倍。

再看s3,a放在第一个字节。b默认4字节对齐,但指定的对齐参数是2,所以b按2字节对齐,放在偏移地址为2的位置,a后补一个字节。sizeof(s3)是6。结构体s3的对齐参数是2(后面会用到),6是2的整数倍。

最后看s4,c放在第一个字节。st3自己的对齐参数是2,指定的对齐参数是4,所以st3取极小值,按2字节对齐,放在偏移地址为2的位置,c后补一个字节。sizeof(s4)是8,结构体的对齐参数是2,8是2的整数倍。

(0)

相关推荐

  • C/C++动态分配与释放内存的区别详细解析

    1. malloc()函数1.1 malloc的全称是memory allocation,中文叫动态内存分配.原型:extern void *malloc(unsigned int num_bytes); 说明:分配长度为num_bytes字节的内存块.如果分配成功则返回指向被分配内存的指针,分配失败返回空指针NULL.当内存不再使用时,应使用free()函数将内存块释放. 1.2 void *malloc(int size); 说明:malloc 向系统申请分配指定size个字节的内存空间,返

  • 深入解析C++ Data Member内存布局

    如果一个类只定义了类名,没定义任何方法和字段,如class A{};那么class A的每个实例占用1个字节的内存,编译器会会在这个其实例中安插一个char,以保证每个A实例在内存中有唯一的地址,如A a,b;&a!=&b.如果一个直接或是间接的继承(不是虚继承)了多个类,如果这个类及其父类像A一样没有方法没有字段,那么这个类的每个实例的大小都是1字节,如果有虚继承,那就不是1字节了,每虚继承一个类,这个类的实例就会多一个指向被虚继承父类的指针.还有一点值得说明的就是像A这样的类,编译器不

  • 基于C++中常见内存错误的总结

    在系统开发过程中出现的bug相对而言是比较好解决的,花费在这个上面的调试代价不是很大,但是在系统集成后的bug往往是难以定位的bug(最好方式是打桩,通过打桩可以初步锁定出错的位置,如:进入函数前打印日志,离开时再次打印日志).而这些难以定位的bug基本分为2类:内存错误和并非问题. 1.内存泄露如果在堆栈上分配的内存使用完成后没有释放就会造成内存泄露.少量的内存泄露不至于让程序崩溃,但是大量的内存泄露就会导致内存耗尽,后续内存分配失败,从而导致程序崩溃.长时间运行软件,即使只有一两处泄露,同样

  • VC++中内存对齐实例教程

    内存对其是VC++程序设计中一个非常重要的技巧,本文即以实例讲述VC++实现内存对其的方法.具体分析如下: 一.概述 我们经常看到求 sizeof(A) 的值的问题,其中A是一个结构体,类,或者联合体. 为了优化CPU访问和优化内存,减少内存碎片,编译器对内存对齐制定了一些规则.但是,不同的编译器可能有不同的实现,本文只针对VC++编译器,这里使用的IDE是VS2012. #pragma pack()是一个预处理,表示内存对齐.布局控制#pragma,为编译程序提供非常规的控制流信息. 二.结构

  • C/C++语言中结构体的内存分配小例子

    当未用 #pragma 指令指定编译器的对齐位数时,结构体按最长宽度的数据成员的宽度对齐:当使用了 #pragma 指令指定编译器的对齐位数时,结构体按最长宽度的数据成员的宽度和 #pragma 指令指定的位数中的较小值对齐. #pragma 指令格式如下所示:#pragma pack(4)     // 或者 #pragma pack(push, 4) 举例如下:(机器字长为 32 位)    struct    {        char a;    }test;    printf("%d

  • 解析内存对齐 Data alignment: Straighten up and fly right的详解

    为了速度和正确性,请对齐你的数据. 概述:对于所有直接操作内存的程序员来说,数据对齐都是很重要的问题.数据对齐对你的程序的表现甚至能否正常运行都会产生影响.就像本文章阐述的一样,理解了对齐的本质还能够解释一些处理器的"奇怪的"行为. 内存存取粒度 程序员通常倾向于认为内存就像一个字节数组.在C及其衍生语言中,char * 用来指代"一块内存",甚至在JAVA中也有byte[]类型来指代物理内存. Figure 1. 程序员是如何看内存的 然而,你的处理器并不是按字节

  • 浅析内存对齐与ANSI C中struct型数据的内存布局

    这些问题或许对不少朋友来说还有点模糊,那么本文就试着探究它们背后的秘密. 首先,至少有一点可以肯定,那就是ANSI C保证结构体中各字段在内存中出现的位置是随它们的声明顺序依次递增的,并且第一个字段的首地址等于整个结构体实例的首地址.比如有这样一个结构体: 复制代码 代码如下: struct vector{int x,y,z;} s;  int *p,*q,*r;  struct vector *ps;  p = &s.x;  q = &s.y;  r = &s.z;  ps =

  • 关于C++内存中字节对齐问题的详细介绍

    一.什么是字节对齐计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐. 二.对齐的作用和原因:1.平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的:某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常.各个硬件平台对存储空间的处理上有很大的不同.一些平台对某些特定类型

  • C/C++ 传递动态内存的深入理解

    当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道.这些往往会使人受尽折磨.所以如果你想深入C/C++编程,你必须静下心来,好好苦一番.现在我们将讨论C/C++里我认为哪一本书都没有完全说清楚,也是涉及概念细节最多,语言中最难的技术之一的动态内存的传递.并且在软件开发中很多专业人员并不能写出相关的合格的代码.[引入] 看下面的例子,这是我们在编写库函数或者项目内的共同函数经常希望的. 复制代码 代码如下: void MyFunc(char *pReturn, size_t siz

  • 深入理解C语言内存对齐

    一.内存对齐的初步讲解 内存对齐可以用一句话来概括: "数据项只能存储在地址是数据项大小的整数倍的内存位置上" 例如int类型占用4个字节,地址只能在0,4,8等位置上. 例1: 复制代码 代码如下: #include <stdio.h>struct xx{        char b;        int a;        int c;        char d;}; int main(){        struct xx bb;        printf(&q

  • 深入理解c/c++ 内存对齐

    内存对齐,memory alignment.为了提高程序的性能,数据结构(尤其是栈)应该尽可能地在自然边界上对齐.原因在于,为了访问未对齐的内存,处理器需要作两次内存访问:然而,对齐的内存访问仅需要一次访问.内存对齐一般讲就是cpu access memory的效率(提高运行速度)和准确性(在一些条件下,如果没有对齐会导致数据不同步现象).依赖cpu,平台和编译器的不同.一些cpu要求较高(这句话说的不准确,但是确实依赖cpu的不同),而有些平台已经优化内存对齐问题,不同编译器的对齐模数不同.总

  • c++动态内存空间示例(自定义空间类型大小和空间长度)

    动态内存空间的申请示范 利用C++的特性,能够自定义空间的类型大小和空间长度 下面这个程序是个数组动态配置的简单示例 复制代码 代码如下: #include <iostream>using namespace std; int main(){   int size = 0; cout << "请输入数组长度:";  //能够自定义的动态申请空间长度    cin >> size;    int *arr_Point = new int[size];

随机推荐