Python实现的拉格朗日插值法示例

本文实例讲述了Python实现的拉格朗日插值法。分享给大家供大家参考,具体如下:

拉格朗日插值简单介绍

拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。

许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个简单函数,其恰好在各个现测的点取到观测到的值,这个函数可以是代数多项式,三角多项式等。

完整Python示例:

# -*- coding:utf-8 -*-
#拉格朗日插值代码
import pandas as pd #导入数据分析库Pandas
from scipy.interpolate import lagrange #导入拉格朗日插值函数
inputfile = 'catering_sale.xls' #销量数据路径
data = pd.read_excel(inputfile) #读入数据
data[u'销量'][(data[u'销量'] < 400) | (data[u'销量'] > 5000)] = None #过滤异常值,将其变为空值
#自定义列向量插值函数
#s为列向量,n为被插值的位置,k为取前后的数据个数,默认为5
def ployinterp_column(s, n, k=5):
 y = s[list(range(n-k, n)) + list(range(n+1, n+1+k))] #取数
 y = y[y.notnull()] #剔除空值
 return lagrange(y.index, list(y))(n) #插值并返回插值结果
#逐个元素判断是否需要插值
for i in data.columns:
 for j in range(len(data)):
  if data[i].isnull()[j]: #如果为空即插值。
   data[i][j] = ployinterp_column(data[i], j)
print(data)

运行结果:

日期           销量
0   2015-03-01  -291.400000
1   2015-02-28  2618.200000
2   2015-02-27  2608.400000
3   2015-02-26  2651.900000
4   2015-02-25  3442.100000
5   2015-02-24  3393.100000
6   2015-02-23  3136.600000
7   2015-02-22  3744.100000
8   2015-02-21  4275.254762
9   2015-02-20  4060.300000
10  2015-02-19  3614.700000
11  2015-02-18  3295.500000
12  2015-02-16  2332.100000
13  2015-02-15  2699.300000
14  2015-02-14  4156.860423
15  2015-02-13  3036.800000
16  2015-02-12   865.000000
17  2015-02-11  3014.300000
18  2015-02-10  2742.800000
19  2015-02-09  2173.500000
20  2015-02-08  3161.800000
21  2015-02-07  3023.800000
22  2015-02-06  2998.100000
23  2015-02-05  2805.900000
24  2015-02-04  2383.400000
25  2015-02-03  2620.200000
26  2015-02-02  2600.000000
27  2015-02-01  2358.600000
28  2015-01-31  2682.200000
29  2015-01-30  2766.800000
..         ...          ...
171 2014-08-31  3494.700000
172 2014-08-30  3691.900000
173 2014-08-29  2929.500000
174 2014-08-28  2760.600000
175 2014-08-27  2593.700000
176 2014-08-26  2884.400000
177 2014-08-25  2591.300000
178 2014-08-24  3022.600000
179 2014-08-23  3052.100000
180 2014-08-22  2789.200000
181 2014-08-21  2909.800000
182 2014-08-20  2326.800000
183 2014-08-19  2453.100000
184 2014-08-18  2351.200000
185 2014-08-17  3279.100000
186 2014-08-16  3381.900000
187 2014-08-15  2988.100000
188 2014-08-14  2577.700000
189 2014-08-13  2332.300000
190 2014-08-12  2518.600000
191 2014-08-11  2697.500000
192 2014-08-10  3244.700000
193 2014-08-09  3346.700000
194 2014-08-08  2900.600000
195 2014-08-07  2759.100000
196 2014-08-06  2915.800000
197 2014-08-05  2618.100000
198 2014-08-04  2993.000000
199 2014-08-03  3436.400000
200 2014-08-02  2261.700000

[201 rows x 2 columns]

附:catering_sale.xls点击此处本站下载

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python用插值法绘制平滑曲线

    本文实例为大家分享了python用插值法绘制平滑曲线的具体代码,供大家参考,具体内容如下 原图: 平滑处理后: 代码实现如下: # 1. 随机构造数据 import numpy as np x = range(10) y = np.random.randint(10,size=10) # 2. 绘制原图 import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline # jupyter notebook显示绘

  • python利用插值法对折线进行平滑曲线处理

    在用python绘图的时候,经常由于数据的原因导致画出来的图折线分界过于明显,因此需要对原数据绘制的折线进行平滑处理,本文介绍利用插值法进行平滑曲线处理: 实现所需的库 numpy.scipy.matplotlib 插值法实现 nearest:最邻近插值法 zero:阶梯插值 slinear:线性插值 quadratic.cubic:2.3阶B样条曲线插值 - 拟合和插值的区别 1.插值:简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点. 2拟合:拟合是通过原有数据,调整曲线系

  • python实现各种插值法(数值分析)

    一维插值 插值不同于拟合.插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过.常见插值方法有拉格朗日插值法.分段插值法.样条插值法. 拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂.随着样点增加,高次插值会带来误差的震动现象称为龙格现象. 分段插值:虽然收敛,但光滑性较差. 样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式.由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项

  • python使用插值法画出平滑曲线

    本文实例为大家分享了python使用插值法画出平滑曲线的具体代码,供大家参考,具体内容如下 实现所需的库 numpy.scipy.matplotlib 实现所需的方法 插值 nearest:最邻近插值法 zero:阶梯插值 slinear:线性插值 quadratic.cubic:2.3阶B样条曲线插值 拟合和插值的区别 简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点. 拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点

  • Python实现的拉格朗日插值法示例

    本文实例讲述了Python实现的拉格朗日插值法.分享给大家供大家参考,具体如下: 拉格朗日插值简单介绍 拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法. 许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个简单函数,其恰好在各个现测的点取到观测到的值,这个函数可以是代数多项式,三角多项式等. 完整Python示例: # -*- coding:utf-8 -*- #拉格朗日

  • Python实现登录接口的示例代码

    之前写了Python实现登录接口的示例代码,最近需要回顾,就顺便发到随笔上了 要求: 1.输入用户名和密码 2.认证成功,显示欢迎信息 3.用户名3次输入错误后,退出程序 4.密码3次输入错误后,锁定用户名 Readme: 1.UserList.txt 是存放用户名和密码的文件,格式为:username: password,每行存放一条用户信息 2.LockList.txt 是存放已被锁定用户名的文件,默认为空 3.用户输入用户名,程序首先查询锁定名单 LockList.txt,如果用户名在里面

  • python中hashlib模块用法示例

    我们以前介绍过一篇Python加密的文章:Python 加密的实例详解.今天我们看看python中hashlib模块用法示例,具体如下. hashlib hashlib主要提供字符加密功能,将md5和sha模块整合到了一起,支持md5,sha1, sha224, sha256, sha384, sha512等算法 具体应用 #!/usr/bin/env python # -*- coding: UTF-8 -*- #pyversion:python3.5 #owner:fuzj import h

  • Python实现字符串匹配算法代码示例

    字符串匹配存在的问题 Python中在一个长字符串中查找子串是否存在可以用两种方法:一是str的find()函数,find()函数只返回子串匹配到的起始位置,若没有,则返回-1:二是re模块的findall函数,可以返回所有匹配到的子串. 但是如果用findall函数时需要注意字符串中存在的特殊字符 蛮力法字符串匹配: 将模式对准文本的前m(模式长度)个字符,然后从左到右匹配每一对对应的字符,直到全部匹配或遇到一个不匹配的字符.后一种情况下,模式向右移一位. 代码如下: def string_m

  • Python多线程扫描端口代码示例

    本文代码实现Python多线程扫描端口,具体实现代码如下. #coding:utf-8 import socket import thread import time socket.setdefaulttimeout(3) def socket_port(ip,port): try: if port>=65535: print(u"端口扫描结束!") s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)#创建套接字 result=s

  • python删除服务器文件代码示例

    本文主要研究的是Python编程删除服务器文件,具体实现 代码如下. 实例1 #coding:utf-8 import paramiko """ 创建文件 删除文件 root权限 """ ssh=paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(hostname="192.168.1.37",po

  • python写一个md5解密器示例

    前言: md5解密,百度了一下发现教程不是很多也不详细. 这个图都没一张... 0x01 windows环境,kali也可以啊 burpsuite requests模块 bs4模块 0x02: 设置好代理 开启burpsuite (我这是新版的burp) 这代表设置好了. 然后开启抓包 然后,顺便输入个MD5点解密 然后我们可以在burp上看到抓取的包 丛图中我们可以看到数据是被url加密了的.我们找个网站进行url解密 解密之后 然后我们将其数据转换为字典的模式 然后创建一个测试脚本看看能不能

  • Python语言生成水仙花数代码示例

    水仙花数是指一个 n 位数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身. 本文将通过Python代码实现打印水仙花数,具体如下: #水仙花数 #narcissistic number #水仙花数是指一个 n 位数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身. #(例如:1^3 + 5^3+ 3^3 = 153) import math import string for x in range(1,10): a=x*x*x for y in range(0,10

  • python opencv之SURF算法示例

    本文介绍了python opencv之SURF算法示例,分享给大家,具体如下: 目标: SURF算法基础 opencv总SURF算法的使用 原理: 上节课使用了SIFT算法,当时这种算法效率不高,需要更快速的算法.在06年有人提出了SURF算法"加速稳定特征",从名字上来看,他是SIFT算法的加速版本. (原文) 在SIFT算法当中使用高斯差分方程(Difference of Gaussian)对高斯拉普拉斯方程( Laplacian of Gaussian)进行近似.然而,SURF使

  • python opencv之SIFT算法示例

    本文介绍了python opencv之SIFT算法示例,分享给大家,具体如下: 目标: 学习SIFT算法的概念 学习在图像中查找SIFT关键的和描述符 原理: (原理部分自己找了不少文章,内容中有不少自己理解和整理的东西,为了方便快速理解内容和能够快速理解原理,本文尽量不使用数学公式,仅仅使用文字来描述.本文中有很多引用别人文章的内容,仅供个人记录使用,若有错误,请指正出来,万分感谢) 之前的harris算法和Shi-Tomasi 算法,由于算法原理所致,具有旋转不变性,在目标图片发生旋转时依然

随机推荐