tensorflow学习笔记之mnist的卷积神经网络实例

mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。

程序比较复杂,我就分成几个部分来叙述。

首先,下载并加载数据:

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)   #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784])            #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10])      #输入的标签占位符

定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层。

#定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

#定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

#定义一个函数,用于构建卷积层
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#定义一个函数,用于构建池化层
def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

接下来构建网络。整个网络由两个卷积层(包含激活层和池化层),一个全连接层,一个dropout层和一个softmax层组成。

#构建网络
x_image = tf.reshape(x, [-1,28,28,1])     #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)   #第一个卷积层
h_pool1 = max_pool(h_conv1)                 #第一个池化层

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)   #第二个卷积层
h_pool2 = max_pool(h_conv2)                  #第二个池化层

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])       #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  #第一个全连接层

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)         #dropout层

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  #softmax层

网络构建好后,就可以开始训练了。

cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))   #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)  #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))         #精确度计算
sess=tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i%100 == 0:         #训练100次,验证一次
  train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
  print 'step %d, training accuracy %g'%(i,train_acc)
  train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5})

test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print "test accuracy %g"%test_acc

Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。一般而言,使用TensorFlow程序的流程是先创建一个图,然后在session中启动它。

这里,我们使用更加方便的InteractiveSession类。通过它,你可以更加灵活地构建你的代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。

训练20000次后,再进行测试,测试精度可以达到99%。

完整代码:

# -*- coding: utf-8 -*-
"""
Created on Thu Sep 8 15:29:48 2016

@author: root
"""
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)   #下载并加载mnist数据
x = tf.placeholder(tf.float32, [None, 784])            #输入的数据占位符
y_actual = tf.placeholder(tf.float32, shape=[None, 10])      #输入的标签占位符

#定义一个函数,用于初始化所有的权值 W
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

#定义一个函数,用于初始化所有的偏置项 b
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

#定义一个函数,用于构建卷积层
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#定义一个函数,用于构建池化层
def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

#构建网络
x_image = tf.reshape(x, [-1,28,28,1])     #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)   #第一个卷积层
h_pool1 = max_pool(h_conv1)                 #第一个池化层

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)   #第二个卷积层
h_pool2 = max_pool(h_conv2)                  #第二个池化层

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])       #reshape成向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  #第一个全连接层

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)         #dropout层

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  #softmax层

cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))   #交叉熵
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)  #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))         #精确度计算
sess=tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i%100 == 0:         #训练100次,验证一次
  train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
  print('step',i,'training accuracy',train_acc)
  train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5})

test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print("test accuracy",test_acc)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • TensorFlow深度学习之卷积神经网络CNN
  • TensorFlow实现卷积神经网络CNN
  • Tensorflow实现卷积神经网络用于人脸关键点识别
  • TensorFlow 实战之实现卷积神经网络的实例讲解
(0)

相关推荐

  • TensorFlow 实战之实现卷积神经网络的实例讲解

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeural Network,CNN) 19世纪60年代科学家最早提出感受野(ReceptiveField).当时通过对猫视觉皮层细胞研究,科学家发现每一个视觉神经元只会处理一小块区域的视觉图像,即感受野.20世纪80年代,日本科学家提出神经认知机(Neocognitron)的概念,被视为卷积神经网络最初

  • TensorFlow实现卷积神经网络CNN

    一.卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因

  • Tensorflow实现卷积神经网络用于人脸关键点识别

    今年来人工智能的概念越来越火,AlphaGo以4:1击败李世石更是起到推波助澜的作用.作为一个开挖掘机的菜鸟,深深感到不学习一下deep learning早晚要被淘汰. 既然要开始学,当然是搭一个深度神经网络跑几个数据集感受一下作为入门最直观了.自己写代码实现的话debug的过程和运行效率都会很忧伤,我也不知道怎么调用GPU- 所以还是站在巨人的肩膀上,用现成的框架吧.粗略了解一下,现在比较知名的有caffe.mxnet.tensorflow等等.选哪个呢?对我来说选择的标准就两个,第一要容易安

  • TensorFlow深度学习之卷积神经网络CNN

    一.卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此

  • tensorflow学习笔记之mnist的卷积神经网络实例

    mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru

  • Tensorflow卷积神经网络实例进阶

    在Tensorflow卷积神经网络实例这篇博客中,我们实现了一个简单的卷积神经网络,没有复杂的Trick.接下来,我们将使用CIFAR-10数据集进行训练. CIFAR-10是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张.CIFAR-10如同其名字,一共标注为10类,每一类图片6000张. 本文实现了进阶的卷积神经网络来解决CIFAR-10分类问题,我们使用了一些新的技巧: 对weights进行了L2的正则化 对图片进行了翻转.随机剪切等数据

  • tensorflow学习笔记之tfrecord文件的生成与读取

    训练模型时,我们并不是直接将图像送入模型,而是先将图像转换为tfrecord文件,再将tfrecord文件送入模型.为进一步理解tfrecord文件,本例先将6幅图像及其标签转换为tfrecord文件,然后读取tfrecord文件,重现6幅图像及其标签. 1.生成tfrecord文件 import os import numpy as np import tensorflow as tf from PIL import Image filenames = [ 'images/cat/1.jpg'

  • tensorflow学习笔记之简单的神经网络训练和测试

    本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下 刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层. 数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出.输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值.借用极客学院的图表示如下: 其中,x1,x2,x3为输入数据,经过运算后,

  • Tensorflow卷积神经网络实例

    CNN最大的特点在于卷积的权值共享结构,可以大幅减少神经网络的参数量,防止过拟合的同时又降低了神经网络模型的复杂度.在CNN中,第一个卷积层会直接接受图像像素级的输入,每一个卷积操作只处理一小块图像,进行卷积变化后再传到后面的网络,每一层卷积都会提取数据中最有效的特征.这种方法可以提取到图像中最基础的特征,比如不同方向的边或者拐角,而后再进行组合和抽象形成更高阶的特征. 一般的卷积神经网络由多个卷积层构成,每个卷积层中通常会进行如下几个操作: 图像通过多个不同的卷积核的滤波,并加偏置(bias)

  • AngularJS学习笔记之表单验证功能实例详解

    本文实例讲述了AngularJS学习笔记之表单验证功能.分享给大家供大家参考,具体如下: 一.执行基本的表单验证 <!DOCTYPE html> <html ng-app='exampleApp'> <head> <meta charset="UTF-8"> <title>表单</title> <script src="../../js/angular.min.js" type="

  • Python学习笔记之迭代器和生成器用法实例详解

    本文实例讲述了Python学习笔记之迭代器和生成器用法.分享给大家供大家参考,具体如下: 迭代器和生成器 迭代器 每次可以返回一个对象元素的对象,例如返回一个列表.我们到目前为止使用的很多内置函数(例如 enumerate)都会返回一个迭代器. 是一种表示数据流的对象.这与列表不同,列表是可迭代对象,但不是迭代器,因为它不是数据流. 生成器 是使用函数创建迭代器的简单方式.也可以使用类定义迭代器 下面是一个叫做 my_range 的生成器函数,它会生成一个从 0 到 (x - 1) 的数字流:

  • Python学习笔记之字符串和字符串方法实例详解

    本文实例讲述了Python学习笔记之字符串和字符串方法.分享给大家供大家参考,具体如下: 字符串 在 python 中,字符串的变量类型显示为 str.你可以使用双引号 " 或单引号 ' 定义字符串 定义字符串 my_string = 'this is a string!' my_string2 = "this is also a string!!!" # Also , we can use backslash '/' to escape quotes. this_strin

  • ES6学习笔记之let与const用法实例分析

    本文实例讲述了ES6学习笔记之let与const用法.分享给大家供大家参考,具体如下: 在ES6中不是var,而是通过let来声明变量,用const来声明常量,有如下一些不同: 1.let与const作用域只限于当前代码块{},而var则没有这种限制. 2.使用let.const申明的变量作用域不会被提升.例如: console.log(str); var str="var declare"; 控制台输出undefined:因为变量申明是在任意代码执行前处理的,在代码区中任意地方声明变

  • vue学习笔记之slot插槽基本用法实例分析

    本文实例讲述了vue学习笔记之slot插槽基本用法.分享给大家供大家参考,具体如下: 不使用插槽,在template中用v-html解析父组件传来的带有标签的content <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <script src="https://cdn.jsdelivr.net/npm/vue/dist/vu

随机推荐