用十张图详解TensorFlow数据读取机制(附代码)

在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解。确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料。今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下TensorFlow的数据读取机制,文章的最后还会给出实战代码以供参考。

TensorFlow读取机制图解

首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示:

假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率。

如何解决这个问题?方法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示:

读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!

而在TensorFlow中,为了方便管理,在内存队列前又添加了一层所谓的“文件名队列”。

为什么要添加这一层文件名队列?我们首先得了解机器学习中的一个概念:epoch。对于一个数据集来讲,运行一个epoch就是将这个数据集中的图片全部计算一遍。如一个数据集中有三张图片A.jpg、B.jpg、C.jpg,那么跑一个epoch就是指对A、B、C三张图片都计算了一遍。两个epoch就是指先对A、B、C各计算一遍,然后再全部计算一遍,也就是说每张图片都计算了两遍。

TensorFlow使用文件名队列+内存队列双队列的形式读入文件,可以很好地管理epoch。下面我们用图片的形式来说明这个机制的运行方式。如下图,还是以数据集A.jpg, B.jpg, C.jpg为例,假定我们要跑一个epoch,那么我们就在文件名队列中把A、B、C各放入一次,并在之后标注队列结束。

程序运行后,内存队列首先读入A(此时A从文件名队列中出队):

再依次读入B和C:

此时,如果再尝试读入,系统由于检测到了“结束”,就会自动抛出一个异常(OutOfRange)。外部捕捉到这个异常后就可以结束程序了。这就是TensorFlow中读取数据的基本机制。如果我们要跑2个epoch而不是1个epoch,那只要在文件名队列中将A、B、C依次放入两次再标记结束就可以了。

TensorFlow读取数据机制的对应函数

如何在TensorFlow中创建上述的两个队列呢?

对于文件名队列,我们使用tf.train.string_input_producer函数。这个函数需要传入一个文件名list,系统会自动将它转为一个文件名队列。

此外tf.train.string_input_producer还有两个重要的参数,一个是num_epochs,它就是我们上文中提到的epoch数。另外一个就是shuffle,shuffle是指在一个epoch内文件的顺序是否被打乱。若设置shuffle=False,如下图,每个epoch内,数据还是按照A、B、C的顺序进入文件名队列,这个顺序不会改变:

如果设置shuffle=True,那么在一个epoch内,数据的前后顺序就会被打乱,如下图所示:

在TensorFlow中,内存队列不需要我们自己建立,我们只需要使用reader对象从文件名队列中读取数据就可以了,具体实现可以参考下面的实战代码。

除了tf.train.string_input_producer外,我们还要额外介绍一个函数:tf.train.start_queue_runners。初学者会经常在代码中看到这个函数,但往往很难理解它的用处,在这里,有了上面的铺垫后,我们就可以解释这个函数的作用了。

在我们使用tf.train.string_input_producer创建文件名队列后,整个系统其实还是处于“停滞状态”的,也就是说,我们文件名并没有真正被加入到队列中(如下图所示)。此时如果我们开始计算,因为内存队列中什么也没有,计算单元就会一直等待,导致整个系统被阻塞。

而使用tf.train.start_queue_runners之后,才会启动填充队列的线程,这时系统就不再“停滞”。此后计算单元就可以拿到数据并进行计算,整个程序也就跑起来了,这就是函数tf.train.start_queue_runners的用处。

实战代码

我们用一个具体的例子感受TensorFlow中的数据读取。如图,假设我们在当前文件夹中已经有A.jpg、B.jpg、C.jpg三张图片,我们希望读取这三张图片5个epoch并且把读取的结果重新存到read文件夹中。

对应的代码如下:

# 导入TensorFlow
import TensorFlow as tf 

# 新建一个Session
with tf.Session() as sess:
  # 我们要读三幅图片A.jpg, B.jpg, C.jpg
  filename = ['A.jpg', 'B.jpg', 'C.jpg']
  # string_input_producer会产生一个文件名队列
  filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)
  # reader从文件名队列中读数据。对应的方法是reader.read
  reader = tf.WholeFileReader()
  key, value = reader.read(filename_queue)
  # tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
  tf.local_variables_initializer().run()
  # 使用start_queue_runners之后,才会开始填充队列
  threads = tf.train.start_queue_runners(sess=sess)
  i = 0
  while True:
    i += 1
    # 获取图片数据并保存
    image_data = sess.run(value)
    with open('read/test_%d.jpg' % i, 'wb') as f:
      f.write(image_data)

我们这里使用filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)建立了一个会跑5个epoch的文件名队列。并使用reader读取,reader每次读取一张图片并保存。

运行代码后,我们得到就可以看到read文件夹中的图片,正好是按顺序的5个epoch:

如果我们设置filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)中的shuffle=True,那么在每个epoch内图像就会被打乱,如图所示:

我们这里只是用三张图片举例,实际应用中一个数据集肯定不止3张图片,不过涉及到的原理都是共通的。

实例:tensorflow读取图片的方法

下面讲解tensorflow如何读取jpg格式的图片,png格式的图片是一样的。有两种情况:

第一种就是把图片看做是一个图片直接读进来,获取图片的原始数据,再进行解码,主要用到的函数就是tf.gfile.FastGFile,tf.image.decode_jpeg

例如:

import tensorflow as tf;
image_raw_data = tf.gfile.FastGFile('/home/penglu/Desktop/11.jpg').read()
image = tf.image.decode_jpeg(image_raw_data) #图片解码
print image.eval(session=tf.Session()) 

输出:

[[[ 11  63 110]
  [ 14  66 113]
  [ 17  69 116]
  ...,

第二种方式就是把图片看看成一个文件,用队列的方式读取

例如:

import tensorflow as tf;
path = '/home/penglu/Desktop/11.jpg'
file_queue = tf.train.string_input_producer([path]) #创建输入队列
image_reader = tf.WholeFileReader()
_, image = image_reader.read(file_queue)
image = tf.image.decode_jpeg(image) 

with tf.Session() as sess:
  coord = tf.train.Coordinator() #协同启动的线程
  threads = tf.train.start_queue_runners(sess=sess, coord=coord) #启动线程运行队列
  print sess.run(image)
  coord.request_stop() #停止所有的线程
  coord.join(threads)

输出:

[[[ 11  63 110]
  [ 14  66 113]
  [ 17  69 116]
  ...,

总结

这篇文章主要用图解的方式详细介绍了TensorFlow读取数据的机制,最后还给出了对应的实战代码,希望能够给大家学习TensorFlow带来一些实质性的帮助。也希望大家多多支持我们。

您可能感兴趣的文章:

  • TensorFlow高效读取数据的方法示例
  • 详解Tensorflow数据读取有三种方式(next_batch)
(0)

相关推荐

  • 详解Tensorflow数据读取有三种方式(next_batch)

    Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好相反,所以结合两种语言的优势.涉及计算的核心算子和运行框架是用C++写的,并提供API给Python.Python调用这些A

  • TensorFlow高效读取数据的方法示例

    概述 最新上传的mcnn中有完整的数据读写示例,可以参考. 关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(t

  • 用十张图详解TensorFlow数据读取机制(附代码)

    在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下TensorFlow的数据读取机制,文章的最后还会给出实战代码以供参考. TensorFlow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg--我们只需要把

  • 详解python实现读取邮件数据并下载附件的实例

    详解python实现读取邮件数据并下载附件的实例 实现结果图: 实现代码: #!/usr/bin/python2.7 # _*_ coding: utf-8 _*_ """ @Author: MarkLiu """ import poplib import email from email.parser import Parser from email.header import decode_header from email.utils im

  • 详解tensorflow载入数据的三种方式

    Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好相反,所以结合两种语言的优势.涉及计算的核心算子和运行框架是用C++写的,并提供API给Python.Python调用这些A

  • Android实现动态添加数据与堆叠折线图详解流程

    目录 效果视频 引用 描述 导包 代码分析 初始化 动态添加数据 温度数据 湿度数据 光照数据 动态添加X轴时间值 初始化 自动刷新时间实现 尾言 效果视频 引用 描述 本示例采用的是非常.非常.非常好用的一款第三方SDK--helloCharts 传送门 导包 第一步 :导入maven maven { url 'https://jitpack.io' } 第二步:导入依赖 implementation 'com.github.lecho:hellocharts-library:1.5.8@aa

  • JavaCV实现读取视频信息及自动截取封面图详解

    目录 概述 javacv 介绍 引入 javacv 读取视频信息 创建 VideoInfo 类 使用 FFmpegFrameGrabber 读取视频信息 截图 概述 最近在对之前写的一个 Spring Boot 的视频网站项目做功能完善,需要利用 FFmpeg 实现读取视频信息和自动截图的功能,查阅资料后发现网上这部分的内容非常少,于是就有了这篇文章. 视频网站项目地址 GitHub 码云 本文将介绍如何利用Javacv实现在视频网站中常见的读取视频信息和自动获取封面图的功能. javacv 介

  • 详解python中读取和查看图片的6种方法

    目录 1 OpenCV 2 imageio 3 PIL 4 scipy.misc 5 tensorflow 6 skimage 本文主要介绍了python中读取和查看图片的6种方法,分享给大家,具体如下: file_name1='test_imgs/spect/1.png' # 这是彩色图片 file_name2='test_imgs/mri/1.png' # 这是灰度图片 1 OpenCV 注:用cv2读取图片默认通道顺序是B.G.R,而不是通常的RGB顺序,所以读进去的彩色图直接显示会出现变

  • 详解tensorflow之过拟合问题实战

    过拟合问题实战 1.构建数据集 我们使用的数据集样本特性向量长度为 2,标签为 0 或 1,分别代表了 2 种类别.借助于 scikit-learn 库中提供的 make_moons 工具我们可以生成任意多数据的训练集. import matplotlib.pyplot as plt # 导入数据集生成工具 import numpy as np import seaborn as sns from sklearn.datasets import make_moons from sklearn.m

  • 详解Linux下读取位图的注意事项

    详解Linux下读取位图的注意事项 在Linux下读取位图遇到的问题,很好地体现了linux与Windows操作系统的不同.按理说位图格式与操作系统无关,读取也应该无关,实际上在位图读到内存中时已经不同.下面主要介绍自己在Linux下操作位图遇到的问题. (一).位图结构 位图一开始是两个结构体,包括位图的详细信息,是读取后面数据的关键.所以读取位图首先要正确读取这两个结构体:BITMAPFILEHEADER和BITMAPINFOHEADER.其具体定义为: typedef struct tag

  • 用matplotlib画等高线图详解

    等高线图是在地理课中讲述山峰山谷时绘制的图形,在机器学习中也会被用在绘制梯度下降算法的图形中. 因为等高线的图有三个信息:x,y以及x,y所对应的高度值. 这个高度值的计算我们用一个函数来表述: 计算x,y坐标对应的高度值 def f(x, y): return (1-x/2+x**5+y**3) * np.exp(-x**2-y**2) 这个函数看起来挺复杂的,但我们这里只是为了能够获得一个高度值,因此其中函数代表什么意义不用关心,只要知道输入一个x,y,输出一个高度值就可以了. 要画出等高线

随机推荐