python PrettyTable模块的安装与简单应用

prettyTable 是一款很简洁但是功能强大的第三方模块,主要是将输入的数据转化为格式化的形式来输出,即:以表格的形式的打印输出出来,能够起到美观的效果,今天简单地试用了一下,

一、下载与安装

进入pypi.python.org查找并下载PrettyTable将其放在Python文件夹下的Scripts文件夹下

进入命令提示符工具,转到Scripts文件夹下,通过命令pip install prettytable-0.7.2.tar.bz2安装该模块

二、简单的使用

导入该模块

from prettytable import PrettyTable

创建表头

table=PrettyTable(["姓名","学号","性别"])

插入数据

table.add_row(["小明","01","男"])
table.add_row(["小红","02","女"])
table.add_row(["小黄","03","男"])

显示该表

print(table)

三、下面是具体的实践:

#!usr/bin/env python
#encoding:utf-8

'''
__Author__:沂水寒城
功能: PrettyTable 模块使用
'''

import prettytable
from prettytable import from_csv
from prettytable import PrettyTable

def testFunc1():
  '''
  '''
  table=PrettyTable()
  table.field_names = ["City name", "Area", "Population", "Annual Rainfall"]
  table.add_row(["Adelaide",1295, 1158259, 600.5])
  table.add_row(["Brisbane",5905, 1857594, 1146.4])
  table.add_row(["Darwin", 112, 120900, 1714.7])
  table.add_row(["Hobart", 1357, 205556, 619.5])
  table.add_row(["Sydney", 2058, 4336374, 1214.8])
  table.add_row(["Melbourne", 1566, 3806092, 646.9])
  table.add_row(["Perth", 5386, 1554769, 869.4])
  print '=================================table===================================='
  print table

  table.add_column("City name",["Adelaide","Brisbane","Darwin","Hobart","Sydney","Melbourne","Perth"])
  table.add_column("Area",[1295, 5905, 112, 1357, 2058, 1566, 5386])
  table.add_column("Population",[1158259, 1857594, 120900, 205556, 4336374, 3806092,1554769])
  table.add_column("Annual Rainfall",[600.5, 1146.4, 1714.7, 619.5, 1214.8, 646.9,869.4])
  print '=================================table===================================='
  print table

def testFunc2(data='mycsv.csv'):
  '''
  从 csv 文件中加载数据
  '''
  mycsv=open(data)
  table=from_csv(mycsv)
  mycsv.close()
  print '===========================================table=============================================='
  print table
  print '=================================table:SepalLength_Species===================================='
  print table.get_string(fields=['SepalLength','Species'])
  print '=======================================table:60=>80 rows======================================'
  print table.get_string(start=60,end=80)

if __name__=='__main__':
  testFunc1()
  testFunc2(data='iris.csv')

结果如下:

=================================table====================================
+-----------+------+------------+-----------------+
| City name | Area | Population | Annual Rainfall |
+-----------+------+------------+-----------------+
| Adelaide | 1295 | 1158259  |   600.5   |
| Brisbane | 5905 | 1857594  |   1146.4   |
|  Darwin | 112 |  120900  |   1714.7   |
|  Hobart | 1357 |  205556  |   619.5   |
|  Sydney | 2058 | 4336374  |   1214.8   |
| Melbourne | 1566 | 3806092  |   646.9   |
|  Perth  | 5386 | 1554769  |   869.4   |
+-----------+------+------------+-----------------+
=================================table====================================
+-----------+------+------------+-----------------+-----------+------+------------+-----------------+
| City name | Area | Population | Annual Rainfall | City name | Area | Population | Annual Rainfall |
+-----------+------+------------+-----------------+-----------+------+------------+-----------------+
| Adelaide | 1295 | 1158259  |   600.5   | Adelaide | 1295 | 1158259  |   600.5   |
| Brisbane | 5905 | 1857594  |   1146.4   | Brisbane | 5905 | 1857594  |   1146.4   |
|  Darwin | 112 |  120900  |   1714.7   |  Darwin | 112 |  120900  |   1714.7   |
|  Hobart | 1357 |  205556  |   619.5   |  Hobart | 1357 |  205556  |   619.5   |
|  Sydney | 2058 | 4336374  |   1214.8   |  Sydney | 2058 | 4336374  |   1214.8   |
| Melbourne | 1566 | 3806092  |   646.9   | Melbourne | 1566 | 3806092  |   646.9   |
|  Perth  | 5386 | 1554769  |   869.4   |  Perth  | 5386 | 1554769  |   869.4   |
+-----------+------+------------+-----------------+-----------+------+------------+-----------------+
===========================================table==============================================
+-----+-------------+------------+-------------+------------+------------+
| id | SepalLength | SepalWidth | PetalLength | PetalWidth | Species  |
+-----+-------------+------------+-------------+------------+------------+
| 1 |   5.1   |  3.5   |   1.4   |  0.2   |  setosa  |
| 2 |   4.9   |   3   |   1.4   |  0.2   |  setosa  |
| 3 |   4.7   |  3.2   |   1.3   |  0.2   |  setosa  |
| 4 |   4.6   |  3.1   |   1.5   |  0.2   |  setosa  |
| 5 |   5   |  3.6   |   1.4   |  0.2   |  setosa  |
| 6 |   5.4   |  3.9   |   1.7   |  0.4   |  setosa  |
| 7 |   4.6   |  3.4   |   1.4   |  0.3   |  setosa  |
| 8 |   5   |  3.4   |   1.5   |  0.2   |  setosa  |
| 9 |   4.4   |  2.9   |   1.4   |  0.2   |  setosa  |
| 10 |   4.9   |  3.1   |   1.5   |  0.1   |  setosa  |
| 11 |   5.4   |  3.7   |   1.5   |  0.2   |  setosa  |
| 12 |   4.8   |  3.4   |   1.6   |  0.2   |  setosa  |
| 13 |   4.8   |   3   |   1.4   |  0.1   |  setosa  |
| 14 |   4.3   |   3   |   1.1   |  0.1   |  setosa  |
| 15 |   5.8   |   4   |   1.2   |  0.2   |  setosa  |
| 16 |   5.7   |  4.4   |   1.5   |  0.4   |  setosa  |
| 17 |   5.4   |  3.9   |   1.3   |  0.4   |  setosa  |
| 18 |   5.1   |  3.5   |   1.4   |  0.3   |  setosa  |
| 19 |   5.7   |  3.8   |   1.7   |  0.3   |  setosa  |
| 20 |   5.1   |  3.8   |   1.5   |  0.3   |  setosa  |
| 21 |   5.4   |  3.4   |   1.7   |  0.2   |  setosa  |
| 22 |   5.1   |  3.7   |   1.5   |  0.4   |  setosa  |
| 23 |   4.6   |  3.6   |   1   |  0.2   |  setosa  |
| 24 |   5.1   |  3.3   |   1.7   |  0.5   |  setosa  |
| 25 |   4.8   |  3.4   |   1.9   |  0.2   |  setosa  |
| 26 |   5   |   3   |   1.6   |  0.2   |  setosa  |
| 27 |   5   |  3.4   |   1.6   |  0.4   |  setosa  |
| 28 |   5.2   |  3.5   |   1.5   |  0.2   |  setosa  |
| 29 |   5.2   |  3.4   |   1.4   |  0.2   |  setosa  |
| 30 |   4.7   |  3.2   |   1.6   |  0.2   |  setosa  |
| 31 |   4.8   |  3.1   |   1.6   |  0.2   |  setosa  |
| 32 |   5.4   |  3.4   |   1.5   |  0.4   |  setosa  |
| 33 |   5.2   |  4.1   |   1.5   |  0.1   |  setosa  |
| 34 |   5.5   |  4.2   |   1.4   |  0.2   |  setosa  |
| 35 |   4.9   |  3.1   |   1.5   |  0.2   |  setosa  |
| 36 |   5   |  3.2   |   1.2   |  0.2   |  setosa  |
| 37 |   5.5   |  3.5   |   1.3   |  0.2   |  setosa  |
| 38 |   4.9   |  3.6   |   1.4   |  0.1   |  setosa  |
| 39 |   4.4   |   3   |   1.3   |  0.2   |  setosa  |
| 40 |   5.1   |  3.4   |   1.5   |  0.2   |  setosa  |
| 41 |   5   |  3.5   |   1.3   |  0.3   |  setosa  |
| 42 |   4.5   |  2.3   |   1.3   |  0.3   |  setosa  |
| 43 |   4.4   |  3.2   |   1.3   |  0.2   |  setosa  |
| 44 |   5   |  3.5   |   1.6   |  0.6   |  setosa  |
| 45 |   5.1   |  3.8   |   1.9   |  0.4   |  setosa  |
| 46 |   4.8   |   3   |   1.4   |  0.3   |  setosa  |
| 47 |   5.1   |  3.8   |   1.6   |  0.2   |  setosa  |
| 48 |   4.6   |  3.2   |   1.4   |  0.2   |  setosa  |
| 49 |   5.3   |  3.7   |   1.5   |  0.2   |  setosa  |
| 50 |   5   |  3.3   |   1.4   |  0.2   |  setosa  |
| 51 |   7   |  3.2   |   4.7   |  1.4   | versicolor |
| 52 |   6.4   |  3.2   |   4.5   |  1.5   | versicolor |
| 53 |   6.9   |  3.1   |   4.9   |  1.5   | versicolor |
| 54 |   5.5   |  2.3   |   4   |  1.3   | versicolor |
| 55 |   6.5   |  2.8   |   4.6   |  1.5   | versicolor |
| 56 |   5.7   |  2.8   |   4.5   |  1.3   | versicolor |
| 57 |   6.3   |  3.3   |   4.7   |  1.6   | versicolor |
| 58 |   4.9   |  2.4   |   3.3   |   1   | versicolor |
| 59 |   6.6   |  2.9   |   4.6   |  1.3   | versicolor |
| 60 |   5.2   |  2.7   |   3.9   |  1.4   | versicolor |
| 61 |   5   |   2   |   3.5   |   1   | versicolor |
| 62 |   5.9   |   3   |   4.2   |  1.5   | versicolor |
| 63 |   6   |  2.2   |   4   |   1   | versicolor |
| 64 |   6.1   |  2.9   |   4.7   |  1.4   | versicolor |
| 65 |   5.6   |  2.9   |   3.6   |  1.3   | versicolor |
| 66 |   6.7   |  3.1   |   4.4   |  1.4   | versicolor |
| 67 |   5.6   |   3   |   4.5   |  1.5   | versicolor |
| 68 |   5.8   |  2.7   |   4.1   |   1   | versicolor |
| 69 |   6.2   |  2.2   |   4.5   |  1.5   | versicolor |
| 70 |   5.6   |  2.5   |   3.9   |  1.1   | versicolor |
| 71 |   5.9   |  3.2   |   4.8   |  1.8   | versicolor |
| 72 |   6.1   |  2.8   |   4   |  1.3   | versicolor |
| 73 |   6.3   |  2.5   |   4.9   |  1.5   | versicolor |
| 74 |   6.1   |  2.8   |   4.7   |  1.2   | versicolor |
| 75 |   6.4   |  2.9   |   4.3   |  1.3   | versicolor |
| 76 |   6.6   |   3   |   4.4   |  1.4   | versicolor |
| 77 |   6.8   |  2.8   |   4.8   |  1.4   | versicolor |
| 78 |   6.7   |   3   |   5   |  1.7   | versicolor |
| 79 |   6   |  2.9   |   4.5   |  1.5   | versicolor |
| 80 |   5.7   |  2.6   |   3.5   |   1   | versicolor |
| 81 |   5.5   |  2.4   |   3.8   |  1.1   | versicolor |
| 82 |   5.5   |  2.4   |   3.7   |   1   | versicolor |
| 83 |   5.8   |  2.7   |   3.9   |  1.2   | versicolor |
| 84 |   6   |  2.7   |   5.1   |  1.6   | versicolor |
| 85 |   5.4   |   3   |   4.5   |  1.5   | versicolor |
| 86 |   6   |  3.4   |   4.5   |  1.6   | versicolor |
| 87 |   6.7   |  3.1   |   4.7   |  1.5   | versicolor |
| 88 |   6.3   |  2.3   |   4.4   |  1.3   | versicolor |
| 89 |   5.6   |   3   |   4.1   |  1.3   | versicolor |
| 90 |   5.5   |  2.5   |   4   |  1.3   | versicolor |
| 91 |   5.5   |  2.6   |   4.4   |  1.2   | versicolor |
| 92 |   6.1   |   3   |   4.6   |  1.4   | versicolor |
| 93 |   5.8   |  2.6   |   4   |  1.2   | versicolor |
| 94 |   5   |  2.3   |   3.3   |   1   | versicolor |
| 95 |   5.6   |  2.7   |   4.2   |  1.3   | versicolor |
| 96 |   5.7   |   3   |   4.2   |  1.2   | versicolor |
| 97 |   5.7   |  2.9   |   4.2   |  1.3   | versicolor |
| 98 |   6.2   |  2.9   |   4.3   |  1.3   | versicolor |
| 99 |   5.1   |  2.5   |   3   |  1.1   | versicolor |
| 100 |   5.7   |  2.8   |   4.1   |  1.3   | versicolor |
| 101 |   6.3   |  3.3   |   6   |  2.5   | virginica |
| 102 |   5.8   |  2.7   |   5.1   |  1.9   | virginica |
| 103 |   7.1   |   3   |   5.9   |  2.1   | virginica |
| 104 |   6.3   |  2.9   |   5.6   |  1.8   | virginica |
| 105 |   6.5   |   3   |   5.8   |  2.2   | virginica |
| 106 |   7.6   |   3   |   6.6   |  2.1   | virginica |
| 107 |   4.9   |  2.5   |   4.5   |  1.7   | virginica |
| 108 |   7.3   |  2.9   |   6.3   |  1.8   | virginica |
| 109 |   6.7   |  2.5   |   5.8   |  1.8   | virginica |
| 110 |   7.2   |  3.6   |   6.1   |  2.5   | virginica |
| 111 |   6.5   |  3.2   |   5.1   |   2   | virginica |
| 112 |   6.4   |  2.7   |   5.3   |  1.9   | virginica |
| 113 |   6.8   |   3   |   5.5   |  2.1   | virginica |
| 114 |   5.7   |  2.5   |   5   |   2   | virginica |
| 115 |   5.8   |  2.8   |   5.1   |  2.4   | virginica |
| 116 |   6.4   |  3.2   |   5.3   |  2.3   | virginica |
| 117 |   6.5   |   3   |   5.5   |  1.8   | virginica |
| 118 |   7.7   |  3.8   |   6.7   |  2.2   | virginica |
| 119 |   7.7   |  2.6   |   6.9   |  2.3   | virginica |
| 120 |   6   |  2.2   |   5   |  1.5   | virginica |
| 121 |   6.9   |  3.2   |   5.7   |  2.3   | virginica |
| 122 |   5.6   |  2.8   |   4.9   |   2   | virginica |
| 123 |   7.7   |  2.8   |   6.7   |   2   | virginica |
| 124 |   6.3   |  2.7   |   4.9   |  1.8   | virginica |
| 125 |   6.7   |  3.3   |   5.7   |  2.1   | virginica |
| 126 |   7.2   |  3.2   |   6   |  1.8   | virginica |
| 127 |   6.2   |  2.8   |   4.8   |  1.8   | virginica |
| 128 |   6.1   |   3   |   4.9   |  1.8   | virginica |
| 129 |   6.4   |  2.8   |   5.6   |  2.1   | virginica |
| 130 |   7.2   |   3   |   5.8   |  1.6   | virginica |
| 131 |   7.4   |  2.8   |   6.1   |  1.9   | virginica |
| 132 |   7.9   |  3.8   |   6.4   |   2   | virginica |
| 133 |   6.4   |  2.8   |   5.6   |  2.2   | virginica |
| 134 |   6.3   |  2.8   |   5.1   |  1.5   | virginica |
| 135 |   6.1   |  2.6   |   5.6   |  1.4   | virginica |
| 136 |   7.7   |   3   |   6.1   |  2.3   | virginica |
| 137 |   6.3   |  3.4   |   5.6   |  2.4   | virginica |
| 138 |   6.4   |  3.1   |   5.5   |  1.8   | virginica |
| 139 |   6   |   3   |   4.8   |  1.8   | virginica |
| 140 |   6.9   |  3.1   |   5.4   |  2.1   | virginica |
| 141 |   6.7   |  3.1   |   5.6   |  2.4   | virginica |
| 142 |   6.9   |  3.1   |   5.1   |  2.3   | virginica |
| 143 |   5.8   |  2.7   |   5.1   |  1.9   | virginica |
| 144 |   6.8   |  3.2   |   5.9   |  2.3   | virginica |
| 145 |   6.7   |  3.3   |   5.7   |  2.5   | virginica |
| 146 |   6.7   |   3   |   5.2   |  2.3   | virginica |
| 147 |   6.3   |  2.5   |   5   |  1.9   | virginica |
| 148 |   6.5   |   3   |   5.2   |   2   | virginica |
| 149 |   6.2   |  3.4   |   5.4   |  2.3   | virginica |
| 150 |   5.9   |   3   |   5.1   |  1.8   | virginica |
+-----+-------------+------------+-------------+------------+------------+
=================================table:SepalLength_Species====================================
+-------------+------------+
| SepalLength | Species  |
+-------------+------------+
|   5.1   |  setosa  |
|   4.9   |  setosa  |
|   4.7   |  setosa  |
|   4.6   |  setosa  |
|   5   |  setosa  |
|   5.4   |  setosa  |
|   4.6   |  setosa  |
|   5   |  setosa  |
|   4.4   |  setosa  |
|   4.9   |  setosa  |
|   5.4   |  setosa  |
|   4.8   |  setosa  |
|   4.8   |  setosa  |
|   4.3   |  setosa  |
|   5.8   |  setosa  |
|   5.7   |  setosa  |
|   5.4   |  setosa  |
|   5.1   |  setosa  |
|   5.7   |  setosa  |
|   5.1   |  setosa  |
|   5.4   |  setosa  |
|   5.1   |  setosa  |
|   4.6   |  setosa  |
|   5.1   |  setosa  |
|   4.8   |  setosa  |
|   5   |  setosa  |
|   5   |  setosa  |
|   5.2   |  setosa  |
|   5.2   |  setosa  |
|   4.7   |  setosa  |
|   4.8   |  setosa  |
|   5.4   |  setosa  |
|   5.2   |  setosa  |
|   5.5   |  setosa  |
|   4.9   |  setosa  |
|   5   |  setosa  |
|   5.5   |  setosa  |
|   4.9   |  setosa  |
|   4.4   |  setosa  |
|   5.1   |  setosa  |
|   5   |  setosa  |
|   4.5   |  setosa  |
|   4.4   |  setosa  |
|   5   |  setosa  |
|   5.1   |  setosa  |
|   4.8   |  setosa  |
|   5.1   |  setosa  |
|   4.6   |  setosa  |
|   5.3   |  setosa  |
|   5   |  setosa  |
|   7   | versicolor |
|   6.4   | versicolor |
|   6.9   | versicolor |
|   5.5   | versicolor |
|   6.5   | versicolor |
|   5.7   | versicolor |
|   6.3   | versicolor |
|   4.9   | versicolor |
|   6.6   | versicolor |
|   5.2   | versicolor |
|   5   | versicolor |
|   5.9   | versicolor |
|   6   | versicolor |
|   6.1   | versicolor |
|   5.6   | versicolor |
|   6.7   | versicolor |
|   5.6   | versicolor |
|   5.8   | versicolor |
|   6.2   | versicolor |
|   5.6   | versicolor |
|   5.9   | versicolor |
|   6.1   | versicolor |
|   6.3   | versicolor |
|   6.1   | versicolor |
|   6.4   | versicolor |
|   6.6   | versicolor |
|   6.8   | versicolor |
|   6.7   | versicolor |
|   6   | versicolor |
|   5.7   | versicolor |
|   5.5   | versicolor |
|   5.5   | versicolor |
|   5.8   | versicolor |
|   6   | versicolor |
|   5.4   | versicolor |
|   6   | versicolor |
|   6.7   | versicolor |
|   6.3   | versicolor |
|   5.6   | versicolor |
|   5.5   | versicolor |
|   5.5   | versicolor |
|   6.1   | versicolor |
|   5.8   | versicolor |
|   5   | versicolor |
|   5.6   | versicolor |
|   5.7   | versicolor |
|   5.7   | versicolor |
|   6.2   | versicolor |
|   5.1   | versicolor |
|   5.7   | versicolor |
|   6.3   | virginica |
|   5.8   | virginica |
|   7.1   | virginica |
|   6.3   | virginica |
|   6.5   | virginica |
|   7.6   | virginica |
|   4.9   | virginica |
|   7.3   | virginica |
|   6.7   | virginica |
|   7.2   | virginica |
|   6.5   | virginica |
|   6.4   | virginica |
|   6.8   | virginica |
|   5.7   | virginica |
|   5.8   | virginica |
|   6.4   | virginica |
|   6.5   | virginica |
|   7.7   | virginica |
|   7.7   | virginica |
|   6   | virginica |
|   6.9   | virginica |
|   5.6   | virginica |
|   7.7   | virginica |
|   6.3   | virginica |
|   6.7   | virginica |
|   7.2   | virginica |
|   6.2   | virginica |
|   6.1   | virginica |
|   6.4   | virginica |
|   7.2   | virginica |
|   7.4   | virginica |
|   7.9   | virginica |
|   6.4   | virginica |
|   6.3   | virginica |
|   6.1   | virginica |
|   7.7   | virginica |
|   6.3   | virginica |
|   6.4   | virginica |
|   6   | virginica |
|   6.9   | virginica |
|   6.7   | virginica |
|   6.9   | virginica |
|   5.8   | virginica |
|   6.8   | virginica |
|   6.7   | virginica |
|   6.7   | virginica |
|   6.3   | virginica |
|   6.5   | virginica |
|   6.2   | virginica |
|   5.9   | virginica |
+-------------+------------+
=======================================table:60=>80 rows======================================
+----+-------------+------------+-------------+------------+------------+
| id | SepalLength | SepalWidth | PetalLength | PetalWidth | Species  |
+----+-------------+------------+-------------+------------+------------+
| 61 |   5   |   2   |   3.5   |   1   | versicolor |
| 62 |   5.9   |   3   |   4.2   |  1.5   | versicolor |
| 63 |   6   |  2.2   |   4   |   1   | versicolor |
| 64 |   6.1   |  2.9   |   4.7   |  1.4   | versicolor |
| 65 |   5.6   |  2.9   |   3.6   |  1.3   | versicolor |
| 66 |   6.7   |  3.1   |   4.4   |  1.4   | versicolor |
| 67 |   5.6   |   3   |   4.5   |  1.5   | versicolor |
| 68 |   5.8   |  2.7   |   4.1   |   1   | versicolor |
| 69 |   6.2   |  2.2   |   4.5   |  1.5   | versicolor |
| 70 |   5.6   |  2.5   |   3.9   |  1.1   | versicolor |
| 71 |   5.9   |  3.2   |   4.8   |  1.8   | versicolor |
| 72 |   6.1   |  2.8   |   4   |  1.3   | versicolor |
| 73 |   6.3   |  2.5   |   4.9   |  1.5   | versicolor |
| 74 |   6.1   |  2.8   |   4.7   |  1.2   | versicolor |
| 75 |   6.4   |  2.9   |   4.3   |  1.3   | versicolor |
| 76 |   6.6   |   3   |   4.4   |  1.4   | versicolor |
| 77 |   6.8   |  2.8   |   4.8   |  1.4   | versicolor |
| 78 |   6.7   |   3   |   5   |  1.7   | versicolor |
| 79 |   6   |  2.9   |   4.5   |  1.5   | versicolor |
| 80 |   5.7   |  2.6   |   3.5   |   1   | versicolor |
+----+-------------+------------+-------------+------------+------------+

这样的结果输出果然是比原始数据好看了许多,这里顺便贴出来代码中使用到的iris.csv数据集,内容如下:

id,SepalLength,SepalWidth,PetalLength,PetalWidth,Species
1,5.1,3.5,1.4,0.2,setosa
2,4.9,3,1.4,0.2,setosa
3,4.7,3.2,1.3,0.2,setosa
4,4.6,3.1,1.5,0.2,setosa
5,5,3.6,1.4,0.2,setosa
6,5.4,3.9,1.7,0.4,setosa
7,4.6,3.4,1.4,0.3,setosa
8,5,3.4,1.5,0.2,setosa
9,4.4,2.9,1.4,0.2,setosa
10,4.9,3.1,1.5,0.1,setosa
11,5.4,3.7,1.5,0.2,setosa
12,4.8,3.4,1.6,0.2,setosa
13,4.8,3,1.4,0.1,setosa
14,4.3,3,1.1,0.1,setosa
15,5.8,4,1.2,0.2,setosa
16,5.7,4.4,1.5,0.4,setosa
17,5.4,3.9,1.3,0.4,setosa
18,5.1,3.5,1.4,0.3,setosa
19,5.7,3.8,1.7,0.3,setosa
20,5.1,3.8,1.5,0.3,setosa
21,5.4,3.4,1.7,0.2,setosa
22,5.1,3.7,1.5,0.4,setosa
23,4.6,3.6,1,0.2,setosa
24,5.1,3.3,1.7,0.5,setosa
25,4.8,3.4,1.9,0.2,setosa
26,5,3,1.6,0.2,setosa
27,5,3.4,1.6,0.4,setosa
28,5.2,3.5,1.5,0.2,setosa
29,5.2,3.4,1.4,0.2,setosa
30,4.7,3.2,1.6,0.2,setosa
31,4.8,3.1,1.6,0.2,setosa
32,5.4,3.4,1.5,0.4,setosa
33,5.2,4.1,1.5,0.1,setosa
34,5.5,4.2,1.4,0.2,setosa
35,4.9,3.1,1.5,0.2,setosa
36,5,3.2,1.2,0.2,setosa
37,5.5,3.5,1.3,0.2,setosa
38,4.9,3.6,1.4,0.1,setosa
39,4.4,3,1.3,0.2,setosa
40,5.1,3.4,1.5,0.2,setosa
41,5,3.5,1.3,0.3,setosa
42,4.5,2.3,1.3,0.3,setosa
43,4.4,3.2,1.3,0.2,setosa
44,5,3.5,1.6,0.6,setosa
45,5.1,3.8,1.9,0.4,setosa
46,4.8,3,1.4,0.3,setosa
47,5.1,3.8,1.6,0.2,setosa
48,4.6,3.2,1.4,0.2,setosa
49,5.3,3.7,1.5,0.2,setosa
50,5,3.3,1.4,0.2,setosa
51,7,3.2,4.7,1.4,versicolor
52,6.4,3.2,4.5,1.5,versicolor
53,6.9,3.1,4.9,1.5,versicolor
54,5.5,2.3,4,1.3,versicolor
55,6.5,2.8,4.6,1.5,versicolor
56,5.7,2.8,4.5,1.3,versicolor
57,6.3,3.3,4.7,1.6,versicolor
58,4.9,2.4,3.3,1,versicolor
59,6.6,2.9,4.6,1.3,versicolor
60,5.2,2.7,3.9,1.4,versicolor
61,5,2,3.5,1,versicolor
62,5.9,3,4.2,1.5,versicolor
63,6,2.2,4,1,versicolor
64,6.1,2.9,4.7,1.4,versicolor
65,5.6,2.9,3.6,1.3,versicolor
66,6.7,3.1,4.4,1.4,versicolor
67,5.6,3,4.5,1.5,versicolor
68,5.8,2.7,4.1,1,versicolor
69,6.2,2.2,4.5,1.5,versicolor
70,5.6,2.5,3.9,1.1,versicolor
71,5.9,3.2,4.8,1.8,versicolor
72,6.1,2.8,4,1.3,versicolor
73,6.3,2.5,4.9,1.5,versicolor
74,6.1,2.8,4.7,1.2,versicolor
75,6.4,2.9,4.3,1.3,versicolor
76,6.6,3,4.4,1.4,versicolor
77,6.8,2.8,4.8,1.4,versicolor
78,6.7,3,5,1.7,versicolor
79,6,2.9,4.5,1.5,versicolor
80,5.7,2.6,3.5,1,versicolor
81,5.5,2.4,3.8,1.1,versicolor
82,5.5,2.4,3.7,1,versicolor
83,5.8,2.7,3.9,1.2,versicolor
84,6,2.7,5.1,1.6,versicolor
85,5.4,3,4.5,1.5,versicolor
86,6,3.4,4.5,1.6,versicolor
87,6.7,3.1,4.7,1.5,versicolor
88,6.3,2.3,4.4,1.3,versicolor
89,5.6,3,4.1,1.3,versicolor
90,5.5,2.5,4,1.3,versicolor
91,5.5,2.6,4.4,1.2,versicolor
92,6.1,3,4.6,1.4,versicolor
93,5.8,2.6,4,1.2,versicolor
94,5,2.3,3.3,1,versicolor
95,5.6,2.7,4.2,1.3,versicolor
96,5.7,3,4.2,1.2,versicolor
97,5.7,2.9,4.2,1.3,versicolor
98,6.2,2.9,4.3,1.3,versicolor
99,5.1,2.5,3,1.1,versicolor
100,5.7,2.8,4.1,1.3,versicolor
101,6.3,3.3,6,2.5,virginica
102,5.8,2.7,5.1,1.9,virginica
103,7.1,3,5.9,2.1,virginica
104,6.3,2.9,5.6,1.8,virginica
105,6.5,3,5.8,2.2,virginica
106,7.6,3,6.6,2.1,virginica
107,4.9,2.5,4.5,1.7,virginica
108,7.3,2.9,6.3,1.8,virginica
109,6.7,2.5,5.8,1.8,virginica
110,7.2,3.6,6.1,2.5,virginica
111,6.5,3.2,5.1,2,virginica
112,6.4,2.7,5.3,1.9,virginica
113,6.8,3,5.5,2.1,virginica
114,5.7,2.5,5,2,virginica
115,5.8,2.8,5.1,2.4,virginica
116,6.4,3.2,5.3,2.3,virginica
117,6.5,3,5.5,1.8,virginica
118,7.7,3.8,6.7,2.2,virginica
119,7.7,2.6,6.9,2.3,virginica
120,6,2.2,5,1.5,virginica
121,6.9,3.2,5.7,2.3,virginica
122,5.6,2.8,4.9,2,virginica
123,7.7,2.8,6.7,2,virginica
124,6.3,2.7,4.9,1.8,virginica
125,6.7,3.3,5.7,2.1,virginica
126,7.2,3.2,6,1.8,virginica
127,6.2,2.8,4.8,1.8,virginica
128,6.1,3,4.9,1.8,virginica
129,6.4,2.8,5.6,2.1,virginica
130,7.2,3,5.8,1.6,virginica
131,7.4,2.8,6.1,1.9,virginica
132,7.9,3.8,6.4,2,virginica
133,6.4,2.8,5.6,2.2,virginica
134,6.3,2.8,5.1,1.5,virginica
135,6.1,2.6,5.6,1.4,virginica
136,7.7,3,6.1,2.3,virginica
137,6.3,3.4,5.6,2.4,virginica
138,6.4,3.1,5.5,1.8,virginica
139,6,3,4.8,1.8,virginica
140,6.9,3.1,5.4,2.1,virginica
141,6.7,3.1,5.6,2.4,virginica
142,6.9,3.1,5.1,2.3,virginica
143,5.8,2.7,5.1,1.9,virginica
144,6.8,3.2,5.9,2.3,virginica
145,6.7,3.3,5.7,2.5,virginica
146,6.7,3,5.2,2.3,virginica
147,6.3,2.5,5,1.9,virginica
148,6.5,3,5.2,2,virginica
149,6.2,3.4,5.4,2.3,virginica
150,5.9,3,5.1,1.8,virginica

prettyTable还可以直接从数据库中读取数据显示出来,这里并没有实践这个,上面的代码testFunc2中实现了读取部分列和指定区间行的作用,感兴趣都可以试试。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python中tkinter的应用:修改字体的实例讲解

    参考链接:tkinter book font字体的参数有如下6个 family: 字体类别,如'Fixdsys' size: 作为一个整数,以点字体的高度.为了获得字体的n个像素高,使用-n. weight: "BOLD" 表示加粗, "NORMAL" 表示正常大小,默认是NORMAL slant:斜体(默认正常), "NORMAL"表示正常,"ITALIC"表示字体倾斜 underline:下划线,1表示添加下滑线,0表示没

  • Python使用sklearn库实现的各种分类算法简单应用小结

    本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用.分享给大家供大家参考,具体如下: KNN from sklearn.neighbors import KNeighborsClassifier import numpy as np def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据 model = KNeighborsClassifier(n_neighbors=10)#默认为5 model.fit(X,y) predicted = m

  • python3应用windows api对后台程序窗口及桌面截图并保存的方法

    python的版本及依赖的库的安装 #版本python 3.7.1 pip install pywin32==224 pip install numpy==1.15.3 pip install opencv-python==3.4.2.16 pip install opencv-contrib-python==3.4.2.16 pip install Pillow-PIL==0.1.dev0 对后台窗口截图 #对后台窗口截图 import win32gui, win32ui, win32con

  • 神经网络(BP)算法Python实现及应用

    本文实例为大家分享了Python实现神经网络算法及应用的具体代码,供大家参考,具体内容如下 首先用Python实现简单地神经网络算法: import numpy as np # 定义tanh函数 def tanh(x): return np.tanh(x) # tanh函数的导数 def tan_deriv(x): return 1.0 - np.tanh(x) * np.tan(x) # sigmoid函数 def logistic(x): return 1 / (1 + np.exp(-x)

  • Python利用pandas处理Excel数据的应用详解

    最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做自动化测试的时候,如果涉及到数据的读取和存储,那么而利用pandas就会非常高效,基本上3行代码可以搞定你20行代码的操作!该教程仅仅限于结合柠檬班的全栈自动化测试课程来讲解下pandas在项目中的应用,这仅仅只是冰山一角,希望大家可以踊跃的去尝试和探索! 一.安装环境: 1:pandas依赖处理Excel的xlrd模块,所以我们需要提前安装这个,安装命令

  • python启动应用程序和终止应用程序的方法

    1. 目的 每天上班,工作需要,电脑上需要每天开机启动一些软件,下班时候,需要关掉一些软件.一个一个打开和关闭貌似是很繁琐的,于是乎,这个脚本产生了. 2. 环境 系统环境: - win7-32位 - python 2.7.9 你还需要安装pywin32. pip install pywin32 3. 编写脚本 启动应用程序脚本 #coding=utf-8 import win32api #日报软件启动 win32api.ShellExecute(0, 'open', r'C:\Program

  • 深入了解Python在HDA中的应用

    Event Handler 在HDA中,要创建Python脚本,需要先选择一个事件处理器(EventHandle),他表示你要在什么时候执行你现在所创建的脚本命令 On Created (在节点创建时,执行脚本) 如选择此项编辑Python脚本,Python将会在节点创建时执行Python中的命令 Python Model (Python模式) 这一项会使创建的脚本在使用过程中根据用户设置执行 可以使用这一项给节点设置参数提示等功能 On Delete(在节点创建时执行脚本) Python在Ho

  • python PrettyTable模块的安装与简单应用

    prettyTable 是一款很简洁但是功能强大的第三方模块,主要是将输入的数据转化为格式化的形式来输出,即:以表格的形式的打印输出出来,能够起到美观的效果,今天简单地试用了一下, 一.下载与安装 进入pypi.python.org查找并下载PrettyTable将其放在Python文件夹下的Scripts文件夹下 进入命令提示符工具,转到Scripts文件夹下,通过命令pip install prettytable-0.7.2.tar.bz2安装该模块 二.简单的使用 导入该模块 from p

  • python cx_Oracle模块的安装和使用详细介绍

    python cx_Oracle模块的安装 最近需要写一个数据迁移脚本,将单一Oracle中的数据迁移到MySQL Sharding集群,在linux下安装cx_Oracle感觉还是有一点麻烦的,整理一下,做个总结. 对于Oracle客户端,不只需要安装相应的python模块(这里我用了Oracle官方的python模块--cx_Oracle),还需要安装Oracle Client,一般选择Instant Client就足够了,还需要配置tnsnames.ora(当然也可以简单的通过host:p

  • Python selenium模块的安装和配置教程

    目录 一.selenium的安装以及简单应用 二.selenium的简单使用 三.selenium提取数据 1.driver对象常用的属性和方法 2.driver对象定位标签元素获取标签对象的方法 3.标签对象提取文本内容和属性值 四.selenium无头模式 一.selenium的安装以及简单应用 我们以谷歌浏览器的chromedriver为例 1.在Python虚拟环境中安装selenium模块 pip/pip3 install selenium 2.下载版本符合的webdriver 以ch

  • Python Paramiko模块的安装与使用详解

    一.前言 常见的解决方法都会需要对远程服务器必要的配置,如果远程服务器只有一两台还好说,如果有N台,还需要逐台进行配置,或者需要使用代码进行以上操作时,上面的办法就不太方便了.而使用paramiko可以很好的解决以上问题,比起前面的方法,它仅需要在本地上安装相应的软件(python以及PyCrypto),对远程服务器没有配置要求,对于连接多台服务器,进行复杂的连接操作特别有帮助.下面本文就来详细的介绍Python Paramiko模块的安装与使用,一起学习学习吧.. 二.安装 安装paramik

  • Python random模块用法解析及简单示例

    用法示例: import random # 1)随机小数 print(random.random()) # 获取大于0且小于1 之间的小数 random.random() print(random.uniform(1, 4)) # 获取大于1小于3的小数 # 2)随机整数 print(random.randint(1, 9)) # 获取大于等于1且小于等于9之间的整数 print(random.randrange(1, 9)) # 获取大于等于1且小于9之间的整数 print(random.ra

  • python Crypto模块的安装与使用方法

    前言 最开始想尝试在windows下面安装python3.6,虽然python安装成功,但在安装Cryto模块用pip3 install pycrypto老是会报错.老夫搞了半天,最终决定在linux下面去做. 以下流程限于linux系统: Crypto不是自带的模块,需要下载.http://www.voidspace.org.uk/python/modules.shtml#pycrypto 我下载了之后,发现下载的是crypto而不是Crypto(就是差个首字母大小写) 而crypto.Cip

  • python爬虫开发之Beautiful Soup模块从安装到详细使用方法与实例

    python爬虫模块Beautiful Soup简介 简单来说,Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据.官方解释如下: Beautiful Soup提供一些简单的.python式的函数用来处理导航.搜索.修改分析树等功能.它是一个工具箱,通过解析文档为用户提供需要抓取的数据,因为简单,所以不需要多少代码就可以写出一个完整的应用程序.Beautiful Soup自动将输入文档转换为Unicode编码,输出文档转换为utf-8编码.你不需要考虑编码方式,除非

  • Python requests模块安装及使用教程图解

    requests模块是一个用于访问网络的模块,其实类似的模块还有很多,不在一一在这里解释.这么多的相似的模块为什么都说只有这个好用呢,因为他人性化.如果你学过urllib之类的模块的话,比如urllib,对比一下就很清楚了. 1.requests模块的安装 requests模块的安装非常简单,使用pip install requests命令即可安装,我是在python的Terminal中直接安装的,大家也可以在cmd命令窗口中进行安装. 2.requests模块的导入 导入requests模块时

  • python openssl模块安装及用法

    小编曾经有过这样的经历,就是在安装使用django框架时候,遇到了部分模块不能够使用,检查了很久,才发现是因为版本问题,需要重新编译安装一个模块版本.这个模块就是我们今天要说的 openssl模块,给大家来一个高瞻远瞩,先让大家掌握住怎么去安装 openssl模块,方便大家日后碰到类似问题,可以得到有效解决. 第一步.下载openssl模块 wget tar -zxvf openssl-1.1.1a.tar.gz cd openssl-1.1.1a 第二步.安装openssl模块 ./confi

  • Python paramiko模块的使用示例

    paramiko模块提供了ssh及sft进行远程登录服务器执行命令和上传下载文件的功能.这是一个第三方的软件包,使用之前需要安装. 1 基于用户名和密码的 sshclient 方式登录 # 建立一个sshclient对象 ssh = paramiko.SSHClient() # 允许将信任的主机自动加入到host_allow 列表,此方法必须放在connect方法的前面 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # 调用c

随机推荐