Python标准库之collections包的使用教程

前言

Python为我们提供了4种基本的数据结构:list, tuple, dict, set,但是在处理数据量较大的情形的时候,这4种数据结构就明显过于单一了,比如list作为数组在某些情形插入的效率会比较低,有时候我们也需要维护一个有序的dict。所以这个时候我们就要用到Python标准库为我们提供的collections包了,它提供了多个有用的集合类,熟练掌握这些集合类,不仅可以让我们让写出的代码更加Pythonic,也可以提高我们程序的运行效率。

defaultdict

defaultdict(default_factory)在普通的dict之上添加了default_factory,使得key不存在时会自动生成相应类型的value,default_factory参数可以指定成list, set, int等各种合法类型。

我们现在有下面这样一组list,虽然我们有5组数据,但是仔细观察后发现其实我们只有3种color,但是每一种color对应多个值。现在我们想要将这个list转换成一个dict,这个dict的key对应一种color,dict的value设置为一个list存放color对应的多个值。我们可以使用defaultdict(list)来解决这个问题。

>>> from collections import defaultdict
>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
...  d[k].append(v)
...
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

以上等价于:

>>> d = {}
>>> for k, v in s:
...  d.setdefault(k, []).append(v)
...
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

如果我们不希望含有重复的元素,可以考虑使用defaultdict(set) 。set相比list的不同之处在于set中不允许存在相同的元素。

>>> from collections import defaultdict
>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict(set)
>>> for k, v in s:
...  d[k].add(v)
...
>>> sorted(d.items())
[('blue', {2, 4}), ('red', {1, 3})]

OrderedDict

Python3.6之前的dict是无序的,但是在某些情形我们需要保持dict的有序性,这个时候可以使用OrderedDict,它是dict的一个subclass,但是在dict的基础上保持了dict的有序型,下面我们来看一下使用方法。

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}
>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])
>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])
>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

使用popitem(last=True)方法可以让我们按照LIFO(先进后出)的顺序删除dict中的key-value,即删除最后一个插入的键值对,如果last=False就按照FIFO(先进先出)删除dict中key-value。

>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}
>>> # dictionary sorted by key
>>> d = OrderedDict(sorted(d.items(), key=lambda t: t[0]))
>>> d
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])
>>> d.popitem()
('pear', 1)
>>> d.popitem(last=False)
('apple', 4)

使用move_to_end(key, last=True)来改变有序的OrderedDict对象的key-value顺序,通过这个方法我们可以将排序好的OrderedDict对象中的任意一个key-value插入到字典的开头或者结尾。

>>> d = OrderedDict.fromkeys('abcde')
>>> d
OrderedDict([('a', None), ('b', None), ('c', None), ('d', None), ('e', None)])
>>> d.move_to_end('b')
>>> d
OrderedDict([('a', None), ('c', None), ('d', None), ('e', None), ('b', None)])
>>> ''.join(d.keys())
'acdeb'
>>> d.move_to_end('b', last=False)
>>> ''.join(d.keys())
'bacde'

deque

list存储数据的优势在于按索引查找元素会很快,但是插入和删除元素就很慢了,因为list是基于数组实现的。deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈,而且线程安全。

list只提供了append和pop方法来从list的尾部插入/删除元素,deque新增了appendleft/popleft等方法允许我们高效的在元素的开头来插入/删除元素。而且使用deque在队列两端append或pop元素的算法复杂度大约是O(1),但是对于list对象改变列表长度和数据位置的操作例如 pop(0)insert(0, v)操作的复杂度高达O(n)。

>>> from collections import deque
>>> dq = deque(range(10), maxlen=10)
>>> dq
deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)
>>> dq.rotate(3)
>>> dq
deque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6], maxlen=10)
>>> dq.rotate(-4)
>>> dq
deque([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], maxlen=10)
>>> dq.appendleft(-1)
>>> dq
deque([-1, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)
>>> dq.extend([11, 22, 33])
>>> dq
deque([3, 4, 5, 6, 7, 8, 9, 11, 22, 33], maxlen=10)
>>> dq.extendleft([10, 20, 30, 40])
>>> dq
deque([40, 30, 20, 10, 3, 4, 5, 6, 7, 8], maxlen=10)

Counter

Count用来统计相关元素的出现次数。

>>> from collections import Counter
>>> ct = Counter('abracadabra')
>>> ct
Counter({'a': 5, 'r': 2, 'b': 2, 'd': 1, 'c': 1})
>>> ct.update('aaaaazzz')
>>> ct
Counter({'a': 10, 'z': 3, 'r': 2, 'b': 2, 'd': 1, 'c': 1})
>>> ct.most_common(2)
[('a', 10), ('z', 3)]
>>> ct.elements()
<itertools.chain object at 0x7fbaad4b44e0>

namedtuple

使用namedtuple(typename, field_names)命名tuple中的元素来使程序更具可读性。

>>> from collections import namedtuple
>>> City = namedtuple('City', 'name country population coordinates')
>>> tokyo = City('Tokyo', 'JP', 36.933, (35.689722, 139.691667))
>>> tokyo
City(name='Tokyo', country='JP', population=36.933, coordinates=(35.689722, 139.691667))
>>> tokyo.population
36.933
>>> tokyo.coordinates
(35.689722, 139.691667)
>>> tokyo[1]
'JP'
>>> City._fields
('name', 'country', 'population', 'coordinates')
>>> LatLong = namedtuple('LatLong', 'lat long')
>>> delhi_data = ('Delhi NCR', 'IN', 21.935, LatLong(28.613889, 77.208889))
>>> delhi = City._make(delhi_data)
>>> delhi._asdict()
OrderedDict([('name', 'Delhi NCR'), ('country', 'IN'), ('population', 21.935),
   ('coordinates', LatLong(lat=28.613889, long=77.208889))])
>>> for key, value in delhi._asdict().items():
  print(key + ':', value)
name: Delhi NCR
country: IN
population: 21.935
coordinates: LatLong(lat=28.613889, long=77.208889)

ChainMap

ChainMap可以用来合并多个字典。

>>> from collections import ChainMap
>>> d = ChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange'
>>> d['snake'] = 'red'
>>> d
ChainMap({'lion': 'orange', 'zebra': 'black', 'snake': 'red'},
   {'elephant': 'blue'}, {'lion': 'yellow'})
>>> del d['lion']
>>> del d['elephant']
Traceback (most recent call last):
 File "/usr/lib/python3.5/collections/__init__.py", line 929, in __delitem__
 del self.maps[0][key]
KeyError: 'elephant'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.5/collections/__init__.py", line 931, in __delitem__
 raise KeyError('Key not found in the first mapping: {!r}'.format(key))
KeyError: "Key not found in the first mapping: 'elephant'"

从上面del['elephant']的报错信息可以看出来,对于改变键值的操作ChainMap只会在第一个字典self.maps[0][key]进行查找,新增加的键值对也都会加入第一个字典,我们来改进一下ChainMap解决这个问题:

class DeepChainMap(ChainMap):
 'Variant of ChainMap that allows direct updates to inner scopes'
 def __setitem__(self, key, value):
  for mapping in self.maps:
   if key in mapping:
    mapping[key] = value
    return
  self.maps[0][key] = value
 def __delitem__(self, key):
  for mapping in self.maps:
   if key in mapping:
    del mapping[key]
    return
  raise KeyError(key)
>>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange'   # update an existing key two levels down
>>> d['snake'] = 'red'   # new keys get added to the topmost dict
>>> del d['elephant']   # remove an existing key one level down
DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

可以使用new_child来deepcopy一个ChainMap:

>>> from collections import ChainMap
>>> a = {'a': 'A', 'c': 'C'}
>>> b = {'b': 'B', 'c': 'D'}
>>> m = ChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'})
>>> m
ChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'})
>>> m['c']
'C'
>>> m.maps
[{'c': 'C', 'a': 'A'}, {'c': 'D', 'b': 'B'}]
>>> a['c'] = 'E'
>>> m['c']
'E'
>>> m
ChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})
>>> m2 = m.new_child()
>>> m2['c'] = 'f'
>>> m2
ChainMap({'c': 'f'}, {'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})
>>> m
ChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})
>>> m2.parents
ChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})

UserDict

下面我们来改进一下字典,查询字典的时候将key转换为str的形式:

class StrKeyDict0(dict):
 def __missing__(self, key):
  if isinstance(key, str):
   raise KeyError(key)
  return self[str(key)]
 def get(self, key, default=None):
  try:
   return self[key]
  except KeyError:
   return default
 def __contains__(self, key):
  return key in self.keys() or str(key) in self.keys()

解释一下上面这段程序:

  • 在__missing__中isinstance(key, str)是必须要的,请思考一下为什么? 因为假设一个key不存在的话,这会造成infinite recursion,self[str(key)]会再次调用__getitem__。
  • __contains__也是必须实现的,因为k in d的时候会进行调用,但是注意即使查找失败它也不会调用__missing__。关于__contains__还有一个细节就是:我们并没有使用k in my_dict,因为str(key) in self的形式,因为这会造成递归调用__contains__。

这里还强调一点,在Python2.x中dict.keys()会返回一个list,这意味着k in my_list必须遍历list。在Python3.x中针对dict.keys()做了优化,性能更高,它会返回一个view如同set一样,详情参考官方文档

上面这个例子可以用UserDict改写,并且将所有的key都以str的形式存储,而且这种写法更加常用简洁:

import collections
class StrKeyDict(collections.UserDict):
 def __missing__(self, key):
  if isinstance(key, str):
   raise KeyError(key)
  return self[str(key)]
 def __contains__(self, key):
  return str(key) in self.data
 def __setitem__(self, key, item):
  self.data[str(key)] = item

UserDict是MutableMapping和Mapping的子类,它继承了MutableMapping.update和Mapping.get两个重要的方法,所以上面我们并没有重写get方法,可以在源码中看到它的实现和我们上面的实现是差不多的。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • 详解Python的collections模块中的deque双端队列结构

    deque 是 double-ended queue的缩写,类似于 list,不过提供了在两端插入和删除的操作. appendleft 在列表左侧插入 popleft 弹出列表左侧的值 extendleft 在左侧扩展 例如: queue = deque() # append values to wait for processing queue.appendleft("first") queue.appendleft("second") queue.appendl

  • Python的collections模块中的OrderedDict有序字典

    如同这个数据结构的名称所说的那样,它记录了每个键值对添加的顺序. d = OrderedDict() d['a'] = 1 d['b'] = 10 d['c'] = 8 for letter in d: print letter 输出: a b c 如果初始化的时候同时传入多个参数,它们的顺序是随机的,不会按照位置顺序存储. >>> d = OrderedDict(a=1, b=2, c=3) OrderedDict([('a', 1), ('c', 3), ('b', 2)]) 除了和

  • 简单掌握Python的Collections模块中counter结构的用法

    counter 是一种特殊的字典,主要方便用来计数,key 是要计数的 item,value 保存的是个数. from collections import Counter >>> c = Counter('hello,world') Counter({'l': 3, 'o': 2, 'e': 1, 'd': 1, 'h': 1, ',': 1, 'r': 1, 'w': 1}) 初始化可以传入三种类型的参数:字典,其他 iterable 的数据类型,还有命名的参数对. | __init

  • 使用Python的内建模块collections的教程

    collections是Python内建的一个集合模块,提供了许多有用的集合类. namedtuple 我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成: >>> p = (1, 2) 但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的. 定义一个class又小题大做了,这时,namedtuple就派上了用场: >>> from collections import namedtuple >>> Point = n

  • Python中Collections模块的Counter容器类使用教程

    1.collections模块 collections模块自Python 2.4版本开始被引入,包含了dict.set.list.tuple以外的一些特殊的容器类型,分别是: OrderedDict类:排序字典,是字典的子类.引入自2.7. namedtuple()函数:命名元组,是一个工厂函数.引入自2.6. Counter类:为hashable对象计数,是字典的子类.引入自2.7. deque:双向队列.引入自2.4. defaultdict:使用工厂函数创建字典,使不用考虑缺失的字典键.引

  • 简介Python的collections模块中defaultdict类型的用法

    defaultdict 主要用来需要对 value 做初始化的情形.对于字典来说,key 必须是 hashable,immutable,unique 的数据,而 value 可以是任意的数据类型.如果 value 是 list,dict 等数据类型,在使用之前必须初始化为空,有些情况需要把 value 初始化为特殊值,比如 0 或者 ''. from collections import defaultdict person_by_age = defaultdict(list) for pers

  • Python的collections模块中namedtuple结构使用示例

    namedtuple 就是命名的 tuple,比较像 C 语言中 struct.一般情况下的 tuple 是 (item1, item2, item3,...),所有的 item 都只能按照 index 访问,没有明确的称呼,而 namedtuple 就是事先把这些 item 命名,以后可以方便访问. from collections import namedtuple # 初始化需要两个参数,第一个是 name,第二个参数是所有 item 名字的列表. coordinate = namedtu

  • Python collections模块实例讲解

    collections模块基本介绍 我们都知道,Python拥有一些内置的数据类型,比如str, int, list, tuple, dict等, collections模块在这些内置数据类型的基础上,提供了几个额外的数据类型: 1.namedtuple(): 生成可以使用名字来访问元素内容的tuple子类2.deque: 双端队列,可以快速的从另外一侧追加和推出对象3.Counter: 计数器,主要用来计数4.OrderedDict: 有序字典5.defaultdict: 带有默认值的字典 n

  • Python标准库之collections包的使用教程

    前言 Python为我们提供了4种基本的数据结构:list, tuple, dict, set,但是在处理数据量较大的情形的时候,这4种数据结构就明显过于单一了,比如list作为数组在某些情形插入的效率会比较低,有时候我们也需要维护一个有序的dict.所以这个时候我们就要用到Python标准库为我们提供的collections包了,它提供了多个有用的集合类,熟练掌握这些集合类,不仅可以让我们让写出的代码更加Pythonic,也可以提高我们程序的运行效率. defaultdict defaultd

  • Python标准库os.path包、glob包使用实例

    os.path包 os.path包主要用于处理字符串路径,比如'/home/zikong/doc/file.doc',提取出有用的信息. 复制代码 代码如下: import os.path path = '/home/zikong/doc/file.doc' print(os.path.basename(path))    # 查询路径中包含的文件名 print(os.path.dirname(path))     # 查询路径中包含的目录 info = os.path.split(path) 

  • Python标准库defaultdict模块使用示例

    Python标准库中collections对集合类型的数据结构进行了很多拓展操作,这些操作在我们使用集合的时候会带来很多的便利,多看看很有好处. defaultdict是其中一个方法,就是给字典value元素添加默认类型,之前看到过但是没注意怎么使用,今天特地瞅了瞅. 首先是各大文章介绍的第一个例子: 复制代码 代码如下: import collections as coll    def default_factory():      return 'default value'    d =

  • 200个Python 标准库总结

    目录 1.文本 2.数学 3.函数式编程 4.文件与目录 5.持久化 6.压缩 7.加密 8.操作系统工具 9.并发 10.进程间通信 11.互联网 12.互联网协议与支持 13.多媒体 14.国际化 15.编程框架 16.Tk图形用户接口 17.开发工具 18.调试 19.运行时 20.解释器 21.导入模块 22.Python语言 23.其他 24.Windows相关 25.Unix相关 1.文本 string:通用字符串操作 re:正则表达式操作 difflib:差异计算工具 textwr

  • 使用Python标准库中的wave模块绘制乐谱的简单教程

    在本文中,我们将探讨一种简洁的方式,以此来可视化你的MP3音乐收藏.此方法最终的结果将是一个映射你所有歌曲的正六边形网格地图,其中相似的音轨将处于相邻的位置.不同区域的颜色对应不同的音乐流派(例如:古典.嘻哈.重摇滚).举个例子来说,下面是我所收藏音乐中三张专辑的映射图:Paganini的<Violin Caprices>.Eminem的<The Eminem Show>和Coldplay的<X&Y>. 为了让它更加有趣(在某些情况下更简单),我强加了一些限制.

  • Python标准库urllib2的一些使用细节总结

    Python 标准库中有很多实用的工具类,但是在具体使用时,标准库文档上对使用细节描述的并不清楚,比如 urllib2 这个 HTTP 客户端库.这里总结了一些 urllib2 的使用细节. 1.Proxy 的设置 2.Timeout 设置 3.在 HTTP Request 中加入特定的 Header 4.Redirect 5.Cookie 6.使用 HTTP 的 PUT 和 DELETE 方法 7.得到 HTTP 的返回码 8.Debug Log Proxy 的设置 urllib2 默认会使用

  • python标准库OS模块详解

    python标准库OS模块简介 os就是"operating system"的缩写,顾名思义,os模块提供的就是各种 Python 程序与操作系统进行交互的接口.通过使用os模块,一方面可以方便地与操作系统进行交互,另一方面页可以极大增强代码的可移植性.如果该模块中相关功能出错,会抛出OSError异常或其子类异常. 注意 如果是读写文件的话,建议使用内置函数open(): 如果是路径相关的操作,建议使用os的子模块os.path: 如果要逐行读取多个文件,建议使用fileinput模

  • Python标准库学习之psutil内存详解

    目录 查询CPU信息 查询内存信息 查询磁盘信息 查询网络信息 查询进程信息 人生苦短,快学Python! 今天介绍的是psutil模块,它是一个跨平台库 https://github.com/giampaolo/psutil 命令行下通过pip安装: pip install psutil 如果跟我一样安装的是Anaconda,则剩下这步了,因为自带了. 顾名思义 psutil = process and system utilities 它专门用来获取操作系统以及硬件相关的信息,比如:CPU.

  • Python标准库之zipfile和tarfile模块的使用

    目录 zip格式 ZipFile参数说明 操作含义 压缩方法 常用方法 tar包 和 gz.bz2.xz格式 操作tar包 压缩 解压缩 删除压缩包中的文件 在我们常用的系统windows和Linux系统中有很多支持的压缩包格式,包括但不限于以下种类:rar.zip.tar,以下的标准库的作用就是用于压缩解压缩其中一些格式的压缩包. zip格式 import zipfile zipfile模块操作压缩包使用ZipFile类进行操作,使用方法和open的使用方法很相似,也是使用r.w.x.a四种操

  • python标准库压缩包模块zipfile和tarfile详解(常用标准库)

    目录 常用的标准库 zip格式 ZipFile参数说明 操作含义 压缩方法 常用方法 tar包 和 gz.bz2.xz格式 删除压缩包中的文件 常用的标准库 在我们常用的系统windows和Linux系统中有很多支持的压缩包格式,包括但不限于以下种类:rar.zip.tar,以下的标准库的作用就是用于压缩解压缩其中一些格式的压缩包. zip格式 import zipfile zipfile模块操作压缩包使用ZipFile类进行操作,使用方法和open的使用方法很相似,也是使用r.w.x.a四种操

随机推荐