使用Python的Scrapy框架编写web爬虫的简单示例

在这个教材中,我们假定你已经安装了Scrapy。假如你没有安装,你可以参考这个安装指南

我们将会用开放目录项目(dmoz)作为我们例子去抓取。

这个教材将会带你走过下面这几个方面:

  • 创造一个新的Scrapy项目
  • 定义您将提取的Item
  • 编写一个蜘蛛去抓取网站并提取Items
  • 编写一个Item Pipeline用来存储提出出来的Items

Scrapy由Python写成。假如你刚刚接触Python这门语言,你可能想要了解这门语言起,怎么最好的利用这门语言。假如你已经熟悉其它类似的语言,想要快速地学习Python,我们推荐这种深入方式学习Python。假如你是新手,想从开始使用Python学习,可以尝试去看看非程序员Python资源列表

创造一个项目

在你要抓取之前,首先要建立一个新的Scrapy项目。然后进去你的存放代码目录,执行如下命令。

scrapy startproject tutorial

它将会创建如下的向导目录:

代码如下:

tutorial/
    scrapy.cfg
    tutorial/
        __init__.py
        items.py
        pipelines.py
        settings.py
        spiders/
            __init__.py
            ...

这是一些基本信息:

  • scrapy.cfg: 项目的配置文件。
  • tutorial/: 项目的python模块, 在这里稍后你将会导入你的代码。
  • tutorial/items.py: 项目items文件。
  • tutorial/pipelines.py: 项目管道文件。
  • tutorial/settings.py: 项目配置文件。
  • tutorial/spiders/: 你将要放入你的spider到这个目录中。

定义我们的Item

Items是装载我们抓取数据的容器。它们工作像简单的Python字典,它提供更多的保护,比如对未定义的字段提供填充功能防止出错。

它们通过创建scrapy.item.Item类来声明并定义它们的属性作为scrapy.item.Field对象,就像是一个对象关系映射(假如你不熟悉ORMs,你将会看见它是一个简单的任务).

我们将需要的item模块化,来控制从demoz.org网站获取的数据,比如我们将要去抓取网站的名字,url和描述信息。我们定义这三种属性的域。我们编辑items.py文件,它在向导目录中。我们Item类看起来像这样。

from scrapy.item import Item, Field

class DmozItem(Item):
 title = Field()
 link = Field()
 desc = Field()

这个看起来复杂的,但是定义这些item能让你用其他Scrapy组件的时候知道你的item到底是什么

我们第一个Spider

Spiders是用户写的类,它用来去抓取一个网站的信息(或者一组网站) 。
我们定义一个初始化的URLs列表去下载,如何跟踪链接,如何去解析这些页面的内容去提取 items.创建一个Spider,你必须是scrapy.spider.BaseSpider的子类, 并定义三个主要的,强制性的属性。

名字: Spider的标识. 它必须是唯一的, 那就是说,你不能在不同的Spiders中设置相同的名字。

开始链接:Spider将会去爬这些URLs的列表。所以刚开始的下载页面将要包含在这些列表中。其他子URL将会从这些起始URL中继承性生成。

parse()是spider的一个方法, 调用时候传入从每一个URL传回的Response对象作为参数。response是方法的唯一参数。

这个方法负责解析response数据和提出抓取的数据(作为抓取的items),跟踪URLs

parse()方法负责处理response和返回抓取数据(作为Item对象) 和跟踪更多的URLs(作为request的对象)

这是我们的第一个Spider的代码;它保存在moz/spiders文件夹中,被命名为dmoz_spider.py:

from scrapy.spider import BaseSpider

class DmozSpider(BaseSpider):
 name = "dmoz"
 allowed_domains = ["dmoz.org"]
 start_urls = [
  "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
  "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
 ]

 def parse(self, response):
  filename = response.url.split("/")[-2]
  open(filename, 'wb').write(response.body)

为了使你的spider工作, 到项目的顶级目录让后运行:

scrapy crawl dmoz

crawl dmoz命令使spider去爬dmoz.org网站的信息。你将会得到如下类似的信息:

2008-08-20 03:51:13-0300 [scrapy] INFO: Started project: dmoz
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled extensions: ...
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled downloader middlewares: ...
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled spider middlewares: ...
2008-08-20 03:51:13-0300 [tutorial] INFO: Enabled item pipelines: ...
2008-08-20 03:51:14-0300 [dmoz] INFO: Spider opened
2008-08-20 03:51:14-0300 [dmoz] DEBUG: Crawled <http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: <None>)
2008-08-20 03:51:14-0300 [dmoz] DEBUG: Crawled <http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: <None>)
2008-08-20 03:51:14-0300 [dmoz] INFO: Spider closed (finished)

注意那些行包含[dmoz], 它和我们的spider相关。你能够看见每行初始化的URL日志信息。因为这些URLs是起始页面,所以他们没有引用referrers。 所以在每行的末尾部门,你能看见(referer: <None>).

但是有趣的是,在我们的parse方法作用下,两个文件被创建: Books and Resources, 它保航两个URLs的内容
刚刚发生了什么事情?

Scrapy为每一个start_urls创建一个scrapy.http.Request对象,并将爬虫的parse 方法指定为回调函数。

这些Request首先被调度,然后被执行,之后通过parse()方法,将scrapy.http.Response对象被返回,结果也被反馈给爬虫。

提取Items
选择器介绍

我们有多种方式去提取网页中数据。Scrapy 使用的是XPath表达式,通常叫做XPath selectors。如果想了解更多关于选择器和提取数据的机制,可以看看如下教程XPath selectors documentation.

这里有一些表达式的例子和它们相关的含义:

  • /html/head/title: 选择<title>元素,在HTML文档的<head>元素里
  • /html/head/title/text(): 选择<title>元素里面的文本
  • //td: 选择所有的<td>元素
  • //div[@class="mine"]: 选择所有的div元素里面class属性为mine的

这里有许多的例子关于怎么使用XPath,可以说XPath表达式是非常强大的。如果你想要学习更多关于XPath,我们推荐如下教程this XPath tutorial.

为了更好使用XPaths, Scrapy提供了一个XPathSelector类,它有两种方式, HtmlXPathSelector(HTML相关数据)和XmlXPathSelector(XML相关数据)。如果你想使用它们,你必须实例化一个Response对象.

你能够把selectors作为对象,它代表文件结构中的节点。所以,第1个实例的节点相当于root节点,或者称为整个文档的节点。

选择器有三种方法(点击方法你能够看见完整的API文档)。

  • select(): 返回选择器的列表,每一个select表示一个xpath表达式选择的节点。
  • extract(): 返回一个unicode字符串 ,该字符串XPath选择器返回的数据。
  • re() : 返回unicode字符串列表,字符串作为参数由正则表达式提取出来。

在Shell里面使用选择器

为了更加形象的使用选择器,我们将会使用Scrapy shell,它同时需要你的系统安装IPython (一个扩展的Python控制台)。

如果使用shell,你必须到项目的顶级目录上,让后运行如下命令:

scrapy shell http://www.dmoz.org/Computers/Programming/Languages/Python/Books/

shell将会显示如下的信息

[ ... Scrapy log here ... ]

[s] Available Scrapy objects:
[s] 2010-08-19 21:45:59-0300 [default] INFO: Spider closed (finished)
[s] hxs  <HtmlXPathSelector (http://www.dmoz.org/Computers/Programming/Languages/Python/Books/) xpath=None>
[s] item  Item()
[s] request <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] response <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] spider  <BaseSpider 'default' at 0x1b6c2d0>
[s] xxs  <XmlXPathSelector (http://www.dmoz.org/Computers/Programming/Languages/Python/Books/) xpath=None>
[s] Useful shortcuts:
[s] shelp()   Print this help
[s] fetch(req_or_url) Fetch a new request or URL and update shell objects
[s] view(response) View response in a browser

In [1]:

当shell装载之后,你将会得到一个response的本地变量。所以你输入reponse.body,你能够看见response的body部分或者你能够输入response.headers,你能够看见reponse.headers部分。

shell同样实例化了两个选择器,一个是HTML(在hvx变量里),一个是XML(在xxs变量里)。所以我们尝试怎么使用它们:

In [1]: hxs.select('//title')
Out[1]: [<HtmlXPathSelector (title) xpath=//title>]

In [2]: hxs.select('//title').extract()
Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>']

In [3]: hxs.select('//title/text()')
Out[3]: [<HtmlXPathSelector (text) xpath=//title/text()>]

In [4]: hxs.select('//title/text()').extract()
Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books']

In [5]: hxs.select('//title/text()').re('(\w+):')
Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']

提取数据Extracting the data

现在我们开始尝试在这几个页面里提取真正的信息。

你能够在控制台里面输入response.body,检查源代码里面的XPaths是否与预期相同。然而,检查原始的HTML代码是一件非常枯燥乏味的事情。假如你想让你的工作变的简单,你使用Firefox扩展的插件例如Firebug来做这项任务。更多关于介绍信息请看Using Firebug for scrapingUsing Firefox for scraping

当你检查了页面源代码之后,你将会发现页面的信息放在一个<ul>元素里面,事实上,确切地说是第二个<ul>元素。

所以我们选择每一个<li>元素使用如下的代码:

hxs.select('//ul/li')

网站的描述信息可以使用如下代码:

hxs.select('//ul/li/text()').extract()

网站的标题:

hxs.select('//ul/li/a/text()').extract()

网站的链接:

hxs.select('//ul/li/a/@href').extract()

如前所述,每个select()调用返回一个selectors列表,所以我们可以结合select()去挖掘更深的节点。我们将会用到这些特性,所以:

sites = hxs.select('//ul/li')
for site in sites:
 title = site.select('a/text()').extract()
 link = site.select('a/@href').extract()
 desc = site.select('text()').extract()
 print title, link, desc

Note

如果想了解更多的嵌套选择器,可以参考Nesting selectorsWorking with relative XPaths相关的Selectors文档
将代码添加到我们spider中:

from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector

class DmozSpider(BaseSpider):
 name = "dmoz"
 allowed_domains = ["dmoz.org"]
 start_urls = [
  "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
  "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
 ]

 def parse(self, response):
  hxs = HtmlXPathSelector(response)
  sites = hxs.select('//ul/li')
  for site in sites:
   title = site.select('a/text()').extract()
   link = site.select('a/@href').extract()
   desc = site.select('text()').extract()
   print title, link, desc

现在我们再次抓取dmoz.org,你将看到站点在输出中被打印 ,运行命令:

scrapy crawl dmoz

使用我们的 item

Item对象是自定义python字典;使用标准字典类似的语法,你能够访问它们的字段(就是以前我们定义的属性)

>>> item = DmozItem()
>>> item['title'] = 'Example title'
>>> item['title']
'Example title'

Spiders希望将抓取的数据放在 Item对象里。所以,为了返回我们抓取的数据,最终的代码要如下这么写 :

from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector

from tutorial.items import DmozItem

class DmozSpider(BaseSpider):
 name = "dmoz"
 allowed_domains = ["dmoz.org"]
 start_urls = [
  "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
  "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
 ]

 def parse(self, response):
  hxs = HtmlXPathSelector(response)
  sites = hxs.select('//ul/li')
  items = []
  for site in sites:
   item = DmozItem()
   item['title'] = site.select('a/text()').extract()
   item['link'] = site.select('a/@href').extract()
   item['desc'] = site.select('text()').extract()
   items.append(item)
  return items

Note

你能够找到完整功能的spider在dirbot项目里,同样你可以访问https://github.com/scrapy/dirbot

现在重新抓取dmoz.org网站:

[dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
  {'desc': [u' - By David Mertz; Addison Wesley. Book in progress, full text, ASCII format. Asks for feedback. [author website, Gnosis Software, Inc.\n],
  'link': [u'http://gnosis.cx/TPiP/'],
  'title': [u'Text Processing in Python']}
[dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
  {'desc': [u' - By Sean McGrath; Prentice Hall PTR, 2000, ISBN 0130211192, has CD-ROM. Methods to build XML applications fast, Python tutorial, DOM and SAX, new Pyxie open source XML processing library. [Prentice Hall PTR]\n'],
  'link': [u'http://www.informit.com/store/product.aspx?isbn=0130211192'],
  'title': [u'XML Processing with Python']}


存储抓取的数据

最简单的方式去存储抓取的数据是使用Feed exports,使用如下的命令:

scrapy crawl dmoz -o items.json -t json

它将会产生一个items.json文件,它包含所有抓取的items(序列化的JSON)。

在一些小的项目里(例如我们的教程中),那就足够啦。然而,假如你想要执行更多复杂的抓取items,你能够写一个 Item Pipeline。 因为在项目创建的时候,一个专门用于Item Pipelines的占位符文件已经随着项目一起被建立,目录在tutorial/pipelines.py。如果你只需要存取这些抓取后的items的话,就不需要去实现任何的条目管道。

(0)

相关推荐

  • 使用scrapy实现爬网站例子和实现网络爬虫(蜘蛛)的步骤

    复制代码 代码如下: #!/usr/bin/env python# -*- coding: utf-8 -*- from scrapy.contrib.spiders import CrawlSpider, Rulefrom scrapy.contrib.linkextractors.sgml import SgmlLinkExtractorfrom scrapy.selector import Selector from cnbeta.items import CnbetaItemclass

  • Scrapy的简单使用教程

    在这篇入门教程中,我们假定你已经安装了python.如果你还没有安装,那么请参考安装指南. 首先第一步:进入开发环境,workon article_spider 进入这个环境: 安装Scrapy,在安装的过程中出现了一些错误:通常这些错误都是部分文件没有安装导致的,因为大学时经常出现,所以对解决这种问题,很实在,直接到http://www.lfd.uci.edu/~gohlke/pythonlibs/这个网站下载对应的文件,下载后用pip安装,具体过程不在赘述. 然后进入工程目录,并打开我们的新

  • 零基础写python爬虫之使用Scrapy框架编写爬虫

    网络爬虫,是在网上进行数据抓取的程序,使用它能够抓取特定网页的HTML数据.虽然我们利用一些库开发一个爬虫程序,但是使用框架可以大大提高效率,缩短开发时间.Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便.使用Scrapy可以很方便的完成网上数据的采集工作,它为我们完成了大量的工作,而不需要自己费大力气去开发. 首先先要回答一个问题. 问:把网站装进爬虫里,总共分几步? 答案很简单,四步: 新建项目 (Project):新建一个新的爬虫项目 明确目标(Item

  • Python爬虫框架Scrapy安装使用步骤

    一.爬虫框架Scarpy简介Scrapy 是一个快速的高层次的屏幕抓取和网页爬虫框架,爬取网站,从网站页面得到结构化的数据,它有着广泛的用途,从数据挖掘到监测和自动测试,Scrapy完全用Python实现,完全开源,代码托管在Github上,可运行在Linux,Windows,Mac和BSD平台上,基于Twisted的异步网络库来处理网络通讯,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片. 二.Scrapy安装指南 我们的安装步骤假设你已经安装一下内容:<1>

  • Python实现从脚本里运行scrapy的方法

    本文实例讲述了Python实现从脚本里运行scrapy的方法.分享给大家供大家参考.具体如下: 复制代码 代码如下: #!/usr/bin/python import os os.environ.setdefault('SCRAPY_SETTINGS_MODULE', 'project.settings') #Must be at the top before other imports from scrapy import log, signals, project from scrapy.x

  • python使用scrapy解析js示例

    复制代码 代码如下: from selenium import selenium class MySpider(CrawlSpider):    name = 'cnbeta'    allowed_domains = ['cnbeta.com']    start_urls = ['http://www.jb51.net'] rules = (        # Extract links matching 'category.php' (but not matching 'subsectio

  • 在Linux系统上安装Python的Scrapy框架的教程

    这是一款提取网站数据的开源工具.Scrapy框架用Python开发而成,它使抓取工作又快又简单,且可扩展.我们已经在virtual box中创建一台虚拟机(VM)并且在上面安装了Ubuntu 14.04 LTS. 安装 Scrapy Scrapy依赖于Python.开发库和pip.Python最新的版本已经在Ubuntu上预装了.因此我们在安装Scrapy之前只需安装pip和python开发库就可以了. pip是作为python包索引器easy_install的替代品,用于安装和管理Python

  • 讲解Python的Scrapy爬虫框架使用代理进行采集的方法

    1.在Scrapy工程下新建"middlewares.py" # Importing base64 library because we'll need it ONLY in case if the proxy we are going to use requires authentication import base64 # Start your middleware class class ProxyMiddleware(object): # overwrite process

  • 使用Python的Scrapy框架编写web爬虫的简单示例

    在这个教材中,我们假定你已经安装了Scrapy.假如你没有安装,你可以参考这个安装指南. 我们将会用开放目录项目(dmoz)作为我们例子去抓取. 这个教材将会带你走过下面这几个方面: 创造一个新的Scrapy项目 定义您将提取的Item 编写一个蜘蛛去抓取网站并提取Items. 编写一个Item Pipeline用来存储提出出来的Items Scrapy由Python写成.假如你刚刚接触Python这门语言,你可能想要了解这门语言起,怎么最好的利用这门语言.假如你已经熟悉其它类似的语言,想要快速

  • 用ReactJS和Python的Flask框架编写留言板的代码示例

    近期要在生产环境上使用react,所以,自己学习了一下,写了一个简单的留言板小程序.完整的代码可以到这里下载:message-board Use 前端使用React,然后还有Bootstrap和jQuery,React负责前端展现,jQuery主要是向服务器发送ajax请求. 后端使用Flask和MongoDB,为前端提供数据.这里主要关注前端,对于后端不做过多说明. 使用webpack,对js文件进行打包. About React React是facebook开发一个用于前段交互的Javasc

  • Python中Scrapy框架的入门教程分享

    目录 前言 安装Scrapy 创建一个Scrapy项目 创建一个爬虫 运行爬虫 结论 前言 Scrapy是一个基于Python的Web爬虫框架,可以快速方便地从互联网上获取数据并进行处理.它的设计思想是基于Twisted异步网络框架,可以同时处理多个请求,并且可以使用多种处理数据的方式,如提取数据.存储数据等. 本教程将介绍如何使用Scrapy框架来编写一个简单的爬虫,从而让您了解Scrapy框架的基本使用方法. 安装Scrapy 首先,您需要在您的计算机上安装Scrapy框架.您可以使用以下命

  • Python Scrapy框架:通用爬虫之CrawlSpider用法简单示例

    本文实例讲述了Python Scrapy框架:通用爬虫之CrawlSpider用法.分享给大家供大家参考,具体如下: 步骤01: 创建爬虫项目 scrapy startproject quotes 步骤02: 创建爬虫模版 scrapy genspider -t quotes quotes.toscrape.com 步骤03: 配置爬虫文件quotes.py import scrapy from scrapy.spiders import CrawlSpider, Rule from scrap

  • 使用Python的Scrapy框架十分钟爬取美女图

    简介 scrapy 是一个 python 下面功能丰富.使用快捷方便的爬虫框架.用 scrapy 可以快速的开发一个简单的爬虫,官方给出的一个简单例子足以证明其强大: 快速开发 下面开始10分钟倒计时: 当然开始前,可以先看看之前我们写过的 scrapy 入门文章 <零基础写python爬虫之使用Scrapy框架编写爬虫 1. 初始化项目 scrapy startproject mzt cd mzt scrapy genspider meizitu meizitu.com 2. 添加 spide

  • Python:Scrapy框架中Item Pipeline组件使用详解

    Item Pipeline简介 Item管道的主要责任是负责处理有蜘蛛从网页中抽取的Item,他的主要任务是清晰.验证和存储数据. 当页面被蜘蛛解析后,将被发送到Item管道,并经过几个特定的次序处理数据. 每个Item管道的组件都是有一个简单的方法组成的Python类. 他们获取了Item并执行他们的方法,同时他们还需要确定的是是否需要在Item管道中继续执行下一步或是直接丢弃掉不处理. Item管道通常执行的过程有 清理HTML数据 验证解析到的数据(检查Item是否包含必要的字段) 检查是

  • Python利用Scrapy框架爬取豆瓣电影示例

    本文实例讲述了Python利用Scrapy框架爬取豆瓣电影.分享给大家供大家参考,具体如下: 1.概念 Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 通过Python包管理工具可以很便捷地对scrapy进行安装,如果在安装中报错提示缺少依赖的包,那就通过pip安装所缺的包 pip install scrapy scrapy的组成结构如下图所示 引擎Scrapy Engine,用于中转调度其他部分的信号和数据

  • 浅谈Scrapy框架普通反爬虫机制的应对策略

    简单低级的爬虫速度快,伪装度低,如果没有反爬机制,它们可以很快的抓取大量数据,甚至因为请求过多,造成服务器不能正常工作.而伪装度高的爬虫爬取速度慢,对服务器造成的负担也相对较小. 爬虫与反爬虫,这相爱相杀的一对,简直可以写出一部壮观的斗争史.而在大数据时代,数据就是金钱,很多企业都为自己的网站运用了反爬虫机制,防止网页上的数据被爬虫爬走.然而,如果反爬机制过于严格,可能会误伤到真正的用户请求;如果既要和爬虫死磕,又要保证很低的误伤率,那么又会加大研发的成本. 简单低级的爬虫速度快,伪装度低,如果

  • python基于twisted框架编写简单聊天室

    本文实例为大家分享了使用python的twisted框架编写一个简单的聊天室具体代码,供大家参考,具体内容如下 下面是基本架构 代码: # -*- coding:utf-8 -*- from twisted.internet.protocol import Factory from twisted.protocols.basic import LineReceiver from twisted.internet import reactor user = {} class ChatReci(Li

随机推荐