R语言关于卡方检验实例详解

卡方检验是一种确定两个分类变量之间是否存在显着相关性的统计方法。 这两个变量应该来自相同的人口,他们应该是类似 是/否,男/女,红/绿等。

例如,我们可以建立一个观察人们的冰淇淋购买模式的数据集,并尝试将一个人的性别与他们喜欢的冰淇淋的味道相关联。 如果发现相关性,我们可以通过了解访问的人的性别的数量来计划适当的味道库存。

语法

用于执行卡方检验的函数是chisq.test()
在R语言中创建卡方检验的基本语法是

chisq.test(data)

以下是所使用的参数的描述

data是以包含观察中变量的计数值的表的形式的数据。

我们将在“MASS”图书馆中获取Cars93数据,该图书馆代表1993年不同型号汽车的销售额。

library("MASS")
print(str(Cars93))

当我们执行上面的代码,它产生以下结果

'data.frame':   93 obs. of  27 variables:
 $ Manufacturer      : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5 ...
 $ Model             : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6 24 54 74 73 35 ...
 $ Type              : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2 3 2 ...
 $ Min.Price         : num  12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
 $ Price             : num  15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
 $ Max.Price         : num  18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
 $ MPG.city          : int  25 18 20 19 22 22 19 16 19 16 ...
 $ MPG.highway       : int  31 25 26 26 30 31 28 25 27 25 ...
 $ AirBags           : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2 2 ...
 $ DriveTrain        : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ...
 $ Cylinders         : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5 ...
 $ EngineSize        : num  1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ...
 $ Horsepower        : int  140 200 172 172 208 110 170 180 170 200 ...
 $ RPM               : int  6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ...
 $ Rev.per.mile      : int  2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ...
 $ Man.trans.avail   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ...
 $ Fuel.tank.capacity: num  13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ...
 $ Passengers        : int  5 5 5 6 4 6 6 6 5 6 ...
 $ Length            : int  177 195 180 193 186 189 200 216 198 206 ...
 $ Wheelbase         : int  102 115 102 106 109 105 111 116 108 114 ...
 $ Width             : int  68 71 67 70 69 69 74 78 73 73 ...
 $ Turn.circle       : int  37 38 37 37 39 41 42 45 41 43 ...
 $ Rear.seat.room    : num  26.5 30 28 31 27 28 30.5 30.5 26.5 35 ...
 $ Luggage.room      : int  11 15 14 17 13 16 17 21 14 18 ...
 $ Weight            : int  2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ...
 $ Origin            : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ...
 $ Make              : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ...

上述结果表明数据集有很多因素变量,可以被认为是分类变量。 对于我们的模型,我们将考虑变量“AirBags”和“Type”。 在这里,我们的目标是找出所售的汽车类型和安全气囊类型之间的任何显着的相关性。 如果观察到相关性,我们可以估计哪种类型的汽车可以更好地卖什么类型的气囊。

# Load the library.
library("MASS")

# Create a data frame from the main data set.
car.data <- data.frame(Cars93$AirBags, Cars93$Type)

# Create a table with the needed variables.
car.data = table(Cars93$AirBags, Cars93$Type)
print(car.data)

# Perform the Chi-Square test.
print(chisq.test(car.data))

当我们执行上面的代码,它产生以下结果

                     Compact Large Midsize Small Sporty Van
  Driver & Passenger       2     4       7     0      3   0
  Driver only              9     7      11     5      8   3
  None                     5     0       4    16      3   6

        Pearson's Chi-squared test

data:  car.data
X-squared = 33.001, df = 10, p-value = 0.0002723

Warning message:
In chisq.test(car.data) : Chi-squared approximation may be incorrect

结论

结果显示p值小于0.05,这表明字符串相关。

到此这篇关于R语言关于卡方检验实例详解的文章就介绍到这了,更多相关R语言卡方检验内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • R语言关于卡方检验实例详解

    卡方检验是一种确定两个分类变量之间是否存在显着相关性的统计方法. 这两个变量应该来自相同的人口,他们应该是类似 是/否,男/女,红/绿等. 例如,我们可以建立一个观察人们的冰淇淋购买模式的数据集,并尝试将一个人的性别与他们喜欢的冰淇淋的味道相关联. 如果发现相关性,我们可以通过了解访问的人的性别的数量来计划适当的味道库存. 语法 用于执行卡方检验的函数是chisq.test(). 在R语言中创建卡方检验的基本语法是 chisq.test(data) 以下是所使用的参数的描述 data是以包含观察

  • R语言多元线性回归实例详解

    目录 一.模型简介 二.求解过程 总结 一.模型简介 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归.当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元线性回归. 二.求解过程 这里我使用的数据是包里面自带的数据,我们导入并进行查看: 可以看到第一列是我们的数据标签(无数学含义),后面五列分别为对应的五个特征即相应的数值.我

  • R语言对二进制文件操作详解

    二进制文件是包含仅以位和字节(0和1)的形式存储的信息的文件.它们不是人类可读的,因为它中的字节转换为包含许多其他不可打印字符的字符和符号.尝试使用任何文本编辑器读取二进制文件将显示如Ø和ð的字符. 二进制文件必须由特定程序读取才能使用.例如,Microsoft Word程序的二进制文件只能通过Word程序读取到人类可读的形式.这表示,除了人类可读的文本之外,还有更多的信息,例如字符和页码等的格式化,它们也与字母数字字符一起存储.最后一个二进制文件是一个连续的字节序列.我们在文本文件中看到的换行

  • Linux 下C语言连接mysql实例详解

    Linux 下C语言连接mysql实例详解 第一步: 安装mysql, 参考:http://www.jb51.net/article/39190.htm 第二步: 安装mysql.h函数库 sudo apt-get install libmysqlclient-dev 执行之后就可以看到/usr/include/MySQL目录了 然后开始我们的链接. 首先看我的数据库 mysql> show databases; +--------------------+ | Database | +----

  • C语言文件复制实例详解

    C语言文件复制实例详解 文件复制,在Linux中,将生成的read.o 重新文件拷贝一份复制到ReadCopy.o中,并且更改ReadCopy.o文件的操作权限.使其能够正常运行. 实例代码: #include <stdio.h> int main(){ FILE *r_file = fopen ("read.o","rb"); FILE *w_file = fopen ("ReadCopy.o","w"); ch

  • C语言柔性数组实例详解

    本文实例分析了C语言柔性数组的概念及用法,对于进一步学习C程序设计有一定的借鉴价值.分享给大家供大家参考.具体如下: 一般来说,结构中最后一个元素允许是未知大小的数组,这个数组就是柔性数组.但结构中的柔性数组前面必须至少一个其他成员,柔性数组成员允许结构中包含一个大小可变的数组,sizeof返回的这种结构大小不包括柔性数组的内存.包含柔数组成员的结构用malloc函数进行内存的动态分配,且分配的内存应该大于结构的大小以适应柔性数组的预期大小.柔性数组到底如何使用? 不完整类型 C和C++对于不完

  • C语言数据结构 快速排序实例详解

    C语言数据结构 快速排序实例详解 一.快速排序简介 快速排序采用分治的思想,第一趟先将一串数字分为两部分,第一部分的数值都比第二部分要小,然后按照这种方法,依次对两边的数据进行排序. 二.代码实现 #include <stdio.h> /* 将两个数据交换 */ void swap(int* Ina , int* Inb) { int temp = *Ina; *Ina = *Inb; *Inb = temp; } /* 进行一趟的快速排序,把一个序列分为两个部分 */ int getPart

  • R语言Legend函数深入详解

    legend(x, y = NULL, legend, fill = NULL, col = par("col"), border = "black", lty, lwd, pch, angle = 45, density = NULL, bty = "o", bg = par("bg"), box.lwd = par("lwd"), box.lty = par("lty"), box.

  • R语言决策基础知识点详解

    决策结构要求程序员指定要由程序评估或测试的一个或多个条件,以及如果条件被确定为真则要执行的一个或多个语句,如果条件为假则执行其他语句. 以下是在大多数编程语言中的典型决策结构的一般形式 R提供以下类型的决策语句. 单击以下链接以检查其详细信息. Sr.No. 声明和描述 1 if语句 if语句由一个布尔表达式后跟一个或多个语句组成. 2 if ... else语句 if语句后面可以有一个可选的else语句,当布尔表达式为false时执行. 3 switch语句 switch语句允许根据值列表测试

  • R语言操作文件方法详解教程

    目录 1. 文件与文件夹列表的读取 2. 新建文件与文件夹 3. 文件与文件夹的删除 4. 查看文件与文件夹是否存在 小练习 由于最近在处理一些真实数据时涉及到嵌套的 .tar.gz 文件的解压,手动一个一个解压过于麻烦.可以使用 shell 脚本或者 bat 脚本来做,但想尝试使用 R 语言对其进行完全解压,这里就需要涉及到对文件与文件夹的一些操作. 网上已经有许多现有教程,这里参考了很多网上的代码,不过会尝试尽量写得更加详细. 整篇文章我们的测试目录结构如下(生成目录结构树,可以直接在当前路

随机推荐