关于python3 opencv 图像二值化的问题(cv2.adaptiveThreshold函数)

前一篇研究了opencv二值化方法threshold的使用,但是这个方法也存在一定的局限性,假如有一张图存在明显的明暗不同的区域,如下图

可以看到左边部分因为整体偏暗,导致二值化后变成全黑,丢失了所有细节,这显然不是我们想要的结果。

原因threshold函数使用一个阈值对图像进行二值化,导致小于这个阈值的像素点全都变成0。因此使用一个阈值的二值化方法并不适用于上面的这张图。那怎么搞?

很明显,上面这张图只有左右两个区域明显亮度不同,最简单的方法就是把图分成两个区域,每个区域分别进行二值化,也就是说二值化上面这张图需要两个不同的阈值。那如果亮度不同的地方有三个,四个或者更多呢?那就每个区域用一个阈值来进行二值化。按照这个思想,因此有了cv2.adaptiveThreshold函数。

先看一下adaptiveThreshold二值化的使用效果。

明显还是有效果的,至少左边部分不是全黑。

接下来简单说一下adaptiveThreshold方法

cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C, dst=None)

这个函数大致意思就是把图片每个像素点作为中心取N*N的区域,然后计算这个区域的阈值,来决定这个像素点变0还是变255

src:需要进行二值化的一张灰度图像

maxValue:满足条件的像素点需要设置的灰度值。(将要设置的灰度值)

adaptiveMethod:自适应阈值算法。可选ADAPTIVE_THRESH_MEAN_C 或 ADAPTIVE_THRESH_GAUSSIAN_C

thresholdType:opencv提供的二值化方法,只能THRESH_BINARY或者THRESH_BINARY_INV

blockSize:要分成的区域大小,上面的N值,一般取奇数

C:常数,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数

dst:输出图像,可以忽略

前两个参数与threshold的src和maxval一样相同

第三个参数adaptiveMethod

提供两种不同的计算阈值的方法,按照网上其他大佬的解释

ADAPTIVE_THRESH_MEAN_C,为局部邻域块的平均值,该算法是先求出块中的均值。

ADAPTIVE_THRESH_GAUSSIAN_C,为局部邻域块的高斯加权和。该算法是在区域中(x, y)周围的像素根据高斯函数按照他们离中心点的距离进行加权计算。

第四个参数thresholdType

只能THRESH_BINARY或者THRESH_BINARY_INV

第5个参数blockSize

上述算法计算邻域时的领邻域大小,一般选择为3、5、7......等

第6个参数C

每个邻域计算出阈值后再减去C作为最终阈值

演示一下blockSize和C对二值化结果的影响,以THRESH_BINARY,ADAPTIVE_THRESH_GAUSSIAN_C为例

可以看到,当blockSize越大,参与计算阈值的区域也越大,细节轮廓就变得越少,整体轮廓越粗越明显

当C越大,每个像素点的N*N邻域计算出的阈值就越小,中心点大于这个阈值的可能性也就越大,设置成255的概率就越大,整体图像白色像素就越多,反之亦然。

这种二值化有点类似canny边缘检测,用来找轮廓或者特征点也挺不错。

import cv2
import numpy as np

blocksize = 3
C=0
def adaptive_demo(gray, blocksize, C):
    binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, blocksize, C)
    # binary = cv2.GaussianBlur(binary, (15,15), 0)
    cv2.imshow('binary', binary)
def C_changed(value):
    global gray
    global blocksize
    global C
    C = value - 30
    print('C:', C)
    adaptive_demo(gray, blocksize, C)
def blocksize_changed(value):
    blocksize = 2 * value + 1
    print('blocksize:', blocksize)
if __name__ == "__main__":
    image_path = './img/1.jpg'
    img = cv2.imread(image_path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    adaptive_demo(gray, 3, 0)
    cv2.createTrackbar('C', 'binary',0, 60, C_changed)
    cv2.createTrackbar('blocksize', 'binary',1, 20, blocksize_changed)
    cv2.waitKey(0)

到此这篇关于python3 opencv 图像二值化笔记(cv2.adaptiveThreshold)的文章就介绍到这了,更多相关python3 opencv 图像二值化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • opencv python如何实现图像二值化

    这篇文章主要介绍了opencv python如何实现图像二值化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑,之后为白 # 有全局和局部两种 # 在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答

  • Python+OpenCV图像处理——图像二值化的实现

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 普通图像二值化 代码如下: import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割. ret, binary = cv.threshold(gray

  • 关于python3 opencv 图像二值化的问题(cv2.adaptiveThreshold函数)

    前一篇研究了opencv二值化方法threshold的使用,但是这个方法也存在一定的局限性,假如有一张图存在明显的明暗不同的区域,如下图 可以看到左边部分因为整体偏暗,导致二值化后变成全黑,丢失了所有细节,这显然不是我们想要的结果. 原因threshold函数使用一个阈值对图像进行二值化,导致小于这个阈值的像素点全都变成0.因此使用一个阈值的二值化方法并不适用于上面的这张图.那怎么搞? 很明显,上面这张图只有左右两个区域明显亮度不同,最简单的方法就是把图分成两个区域,每个区域分别进行二值化,也就

  • 详解Python+OpenCV实现图像二值化

    目录 一.图像二值化 1.效果 2.源码 二.图像二值化(调节阈值) 1.源码一 2.源码二 一.图像二值化 1.效果 2.源码 import cv2 import numpy as np import matplotlib.pyplot as plt # img = cv2.imread('test.jpg') #这几行是对图像进行降噪处理,但事还存在一些问题. # dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) # plt

  • C#数字图像处理之图像二值化(彩色变黑白)的方法

    本文实例讲述了C#数字图像处理之图像二值化(彩色变黑白)的方法.分享给大家供大家参考.具体如下: //定义图像二值化函数 private static Bitmap PBinary(Bitmap src,int v) { int w = src.Width; int h = src.Height; Bitmap dstBitmap = new Bitmap(src.Width ,src.Height ,System .Drawing .Imaging .PixelFormat .Format24

  • 基于c#图像灰度化、灰度反转、二值化的实现方法详解

    图像灰度化:将彩色图像转化成为灰度图像的过程成为图像的灰度化处理.彩色图像中的每个像素的颜色有R.G.B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围.而灰度图像是R.G.B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些.灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征.图像的灰度

  • opencv函数threshold、adaptiveThreshold、Otsu二值化的实现

    threshold:固定阈值二值化, ret, dst = cv2.threshold(src, thresh, maxval, type) src: 输入图,只能输入单通道图像,通常来说为灰度图 dst: 输出图 thresh: 阈值 maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值 type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY: cv2.THRESH_BINARY_INV: cv2.THRESH_TRUNC: cv2.T

  • OpenCV实现反阈值二值化

    反阈值二值化 反阈值二值化与阈值二值化互为逆操作.在OpenCV中该类的实现依赖于threshold() 函数.下面是该函数的声明: threshold(src, dst, thresh, maxval, type); 各参数解释 ·src 表示此操作的源(输入图像)的Mat对象. ·mat 表示目标(输出)图像的类Mat的对象. ·thresh 表示阈值T. ·maxval 表示最大灰度值,一般为255. ·type 表示要使用的阈值类型的整数类型变量,反阈值二值化为Imgproc.THRES

  • python opencv 二值化 计算白色像素点的实例

    贴部分代码 #! /usr/bin/env python # -*- coding: utf-8 -*- import cv2 import numpy as np from PIL import Image area = 0 def ostu(img): global area image=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转灰度 blur = cv2.GaussianBlur(image,(5,5),0) # 阈值一定要设为 0 !高斯模糊 re

  • Android实现图像灰度化、线性灰度变化和二值化处理方法

    1.图像灰度化: public Bitmap bitmap2Gray(Bitmap bmSrc) { // 得到图片的长和宽 int width = bmSrc.getWidth(); int height = bmSrc.getHeight(); // 创建目标灰度图像 Bitmap bmpGray = null; bmpGray = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565); // 创建画布 Canvas c = ne

随机推荐