使用Redis实现分布式锁的方法

目录
  • Redis 中的分布式锁如何使用
    • 分布式锁的使用场景
    • 使用 Redis 来实现分布式锁
      • 使用 set key value px milliseconds nx 实现
      • SETNX+Lua 实现
    • 使用 Redlock 实现分布式锁
    • 锁的续租
    • 看看 SETEX 的源码
    • 为什么 Redis 可以用来做分布式锁
    • 分布式锁如何选择
    • 总结
    • 参考

Redis 中的分布式锁如何使用

分布式锁的使用场景

为了保证我们线上服务的并发性和安全性,目前我们的服务一般抛弃了单体应用,采用的都是扩展性很强的分布式架构。

对于可变共享资源的访问,同一时刻,只能由一个线程或者进程去访问操作。这时候我们就需要做个标识,如果当前有线程或者进程在操作共享变量,我们就做个标记,标识当前资源正在被操作中, 其它的线程或者进程,就不能进行操作了。当前操作完成之后,删除标记,这样其他的线程或者进程,就能来申请共享变量的操作。通过上面的标记来保证同一时刻共享变量只能由一个线程或者进行持有。

对于单体应用:多个线程之间访问可变共享变量,比较容易处理,可简单使用内存来存储标示即可;

分布式应用:这种场景下比较麻烦,因为多个应用,部署的地址可能在不同的机房,一个在北京一个在上海。不能简单的存储标示在内存中了,这时候需要使用公共内存来记录该标示,栗如 Redis,MySQL 。。。

使用 Redis 来实现分布式锁

这里来聊聊如何使用 Redis 实现分布式锁

Redis 中分布式锁一般会用 set key value px milliseconds nx 或者 SETNX+Lua来实现。

因为 SETNX 命令,需要配合 EXPIRE 设置过期时间,Redis 中单命令的执行是原子性的,组合命令就需要使用 Lua 才能保证原子性了。

看下如何实现

使用 set key value px milliseconds nx 实现

因为这个命令同时能够设置键值和过期时间,同时Redis中的单命令都是原子性的,所以加锁的时候使用这个命令即可

func (r *Redis) TryLock(ctx context.Context, key, value string, expire time.Duration) (isGetLock bool, err error) {
	// 使用 set nx
	res, err := r.Do(ctx, "set", key, value, "px", expire.Milliseconds(), "nx").Result()
	if err != nil {
		return false, err
	}
	if res == "OK" {
		return true, nil
	}
	return false, nil
}

SETNX+Lua 实现

如果使用 SETNX 命令,这个命令不能设置过期时间,需要配合 EXPIRE 命令来使用。

因为是用到了两个命令,这时候两个命令的组合使用是不能保障原子性的,在一些并发比较大的时候,需要配合使用 Lua 脚本来保证命令的原子性。

func tryLockScript() string {
	script := `
		local key = KEYS[1]

		local value = ARGV[1]
		local expireTime = ARGV[2]
		local isSuccess = redis.call('SETNX', key, value)

		if isSuccess == 1 then
			redis.call('EXPIRE', key, expireTime)
			return "OK"
		end

		return "unLock"    `
	return script
}

func (r *Redis) TryLock(ctx context.Context, key, value string, expire time.Duration) (isGetLock bool, err error) {
	// 使用 Lua + SETNX
	res, err := r.Eval(ctx, tryLockScript(), []string{key}, value, expire.Seconds()).Result()
	if err != nil {
		return false, err
	}
	if res == "OK" {
		return true, nil
	}
	return false, nil
}

除了上面加锁两个命令的区别之外,在解锁的时候需要注意下不能误删除别的线程持有的锁

为什么会出现这种情况呢,这里来分析下

举个栗子

1、线程1获取了锁,锁的过期时间为1s;

2、线程1完成了业务操作,用时1.5s ,这时候线程1的锁已经被过期时间自动释放了,这把锁已经被别的线程获取了;

3、但是线程1不知道,接着去释放锁,这时候就会将别的线程的锁,错误的释放掉。

面对这种情况,其实也很好处理

1、设置 value 具有唯一性;

2、每次删除锁的时候,先去判断下 value 的值是否能对的上,不相同就表示,锁已经被别的线程获取了;

看下代码实现

var UnLockErr = errors.New("未解锁成功")
func unLockScript() string {
	script := `
		local value = ARGV[1]
		local key = KEYS[1]
		local keyValue = redis.call('GET', key)
		if tostring(keyValue) == tostring(value) then
			return redis.call('DEL', key)
		else
			return 0
		end
    `
	return script
}
func (r *Redis) Unlock(ctx context.Context, key, value string) (bool, error) {
	res, err := r.Eval(ctx, unLockScript(), []string{key}, value).Result()
	if err != nil {
		return false, err
	}
	return res.(int64) != 0, nil
}

代码可参考lock

上面的这类锁的最大缺点就是只作用在一个节点上,即使 Redis 通过 sentinel 保证高可用,如果这个 master 节点由于某些原因放生了主从切换,那么就会出现锁丢失的情况:

1、在 Redis 的 master 节点上拿到了锁;

2、但是这个加锁的 key 还没有同步到 slave 节点;

3、master 故障,发生了故障转移,slave 节点升级为 master 节点;

4、导致锁丢失。

针对这种情况如何处理呢,下面来聊聊 Redlock 算法

使用 Redlock 实现分布式锁

在 Redis 的分布式环境中,我们假设有 N 个 Redis master。这些节点完全互相独立,不存在主从复制或者其他集群协调机制。我们确保将在 N 个实例上使用与在 Redis 单实例下相同方法获取和释放锁。现在我们假设有 5 个 Redis master 节点,同时我们需要在5台服务器上面运行这些 Redis 实例,这样保证他们不会同时都宕掉。

为了取到锁,客户端营该执行以下操作:

1、获取当前Unix时间,以毫秒为单位。

2、依次尝试从5个实例,使用相同的key和具有唯一性的 value(例如UUID)获取锁。当向 Redis 请求获取锁时,客户端应该设置一个网络连接和响应超时时间,这个超时时间应该小于锁的失效时间。例如你的锁自动失效时间为10秒,则超时时间应该在 5-50 毫秒之间。这样可以避免服务器端 Redis 已经挂掉的情况下,客户端还在死死地等待响应结果。如果服务器端没有在规定时间内响应,客户端应该尽快尝试去另外一个 Redis 实例请求获取锁;

3、客户端使用当前时间减去开始获取锁时间(步骤1记录的时间)就得到获取锁使用的时间。当且仅当从大多数(N/2+1,这里是3个节点)的 Redis 节点都取到锁,并且使用的时间小于锁失效时间时,锁才算获取成功;

4、如果取到了锁,key 的真正有效时间等于有效时间减去获取锁所使用的时间(步骤3计算的结果);

5、如果因为某些原因,获取锁失败(没有在至少N/2+1个 Redis 实例取到锁或者取锁时间已经超过了有效时间),客户端应该在所有的Redis实例上进行解锁(即便某些 Redis 实例根本就没有加锁成功,防止某些节点获取到锁但是客户端没有得到响应而导致接下来的一段时间不能被重新获取锁)。

根据官方的推荐,go 版本中 Redsync 实现了这一算法,这里看下具体的实现过程

redsync项目地址

// LockContext locks m. In case it returns an error on failure, you may retry to acquire the lock by calling this method again.
func (m *Mutex) LockContext(ctx context.Context) error {
	if ctx == nil {
		ctx = context.Background()
	}
	value, err := m.genValueFunc()
	if err != nil {
		return err
	}

	for i := 0; i < m.tries; i++ {
		if i != 0 {
			select {
			case <-ctx.Done():
				// Exit early if the context is done.
				return ErrFailed
			case <-time.After(m.delayFunc(i)):
				// Fall-through when the delay timer completes.
			}
		}
		start := time.Now()
		// 尝试在所有的节点中加锁
		n, err := func() (int, error) {
			ctx, cancel := context.WithTimeout(ctx, time.Duration(int64(float64(m.expiry)*m.timeoutFactor)))
			defer cancel()
			return m.actOnPoolsAsync(func(pool redis.Pool) (bool, error) {
				// acquire 加锁函数
				return m.acquire(ctx, pool, value)
			})
		}()
		if n == 0 && err != nil {
			return err
		}
		// 如果加锁节点书没有达到的设定的数目
		// 或者键值的过期时间已经到了
		// 在所有的节点中解锁
		now := time.Now()
		until := now.Add(m.expiry - now.Sub(start) - time.Duration(int64(float64(m.expiry)*m.driftFactor)))
		if n >= m.quorum && now.Before(until) {
			m.value = value
			m.until = until
			return nil
		}
		_, err = func() (int, error) {
			ctx, cancel := context.WithTimeout(ctx, time.Duration(int64(float64(m.expiry)*m.timeoutFactor)))
			defer cancel()
			return m.actOnPoolsAsync(func(pool redis.Pool) (bool, error) {
				// 解锁函数
				return m.release(ctx, pool, value)
			})
		}()
		if i == m.tries-1 && err != nil {
			return err
		}
	}
	return ErrFailed
}
// 遍历所有的节点,并且在每个节点中执行传入的函数
func (m *Mutex) actOnPoolsAsync(actFn func(redis.Pool) (bool, error)) (int, error) {
	type result struct {
		Status bool
		Err    error
	}
	ch := make(chan result)
	// 执行传入的函数
	for _, pool := range m.pools {
		go func(pool redis.Pool) {
			r := result{}
			r.Status, r.Err = actFn(pool)
			ch <- r
		}(pool)
	}
	n := 0
	var err error
	// 计算执行成功的节点数目
	for range m.pools {
		r := <-ch
		if r.Status {
			n++
		} else if r.Err != nil {
			err = multierror.Append(err, r.Err)
		}
	}
	return n, err
}
// 手动解锁的lua脚本
var deleteScript = redis.NewScript(1, `
	if redis.call("GET", KEYS[1]) == ARGV[1] then
		return redis.call("DEL", KEYS[1])
	else
		return 0
	end
`)
// 手动解锁
func (m *Mutex) release(ctx context.Context, pool redis.Pool, value string) (bool, error) {
	conn, err := pool.Get(ctx)
	if err != nil {
		return false, err
	}
	defer conn.Close()
	status, err := conn.Eval(deleteScript, m.name, value)
	if err != nil {
		return false, err
	}
	return status != int64(0), nil
}

分析下思路

1、遍历所有的节点,然后尝试在所有的节点中执行加锁的操作;

2、收集加锁成功的节点数,如果没有达到指定的数目,释放刚刚添加的锁;

关于 Redlock 的缺点可参见

How to do distributed locking

锁的续租

Redis 中分布式锁还有一个问题就是锁的续租问题,当锁的过期时间到了,但是业务的执行时间还没有完成,这时候就需要对锁进行续租了

续租的流程

1、当客户端加锁成功后,可以启动一个定时的任务,每隔一段时间,检查业务是否完成,未完成,增加 key 的过期时间;

2、这里判断业务是否完成的依据是:

  • 1、这个 key 是否存在,如果 key 不存在了,就表示业务已经执行完成了,也就不需要进行续租操作了;
  • 2、同时需要校验下 value 值,如果 value 对应的值和之前写入的值不同了,说明当前锁已经被别的线程获取了;

看下 redsync 中续租的实现

// Extend resets the mutex's expiry and returns the status of expiry extension.
func (m *Mutex) Extend() (bool, error) {
	return m.ExtendContext(nil)
}

// ExtendContext resets the mutex's expiry and returns the status of expiry extension.
func (m *Mutex) ExtendContext(ctx context.Context) (bool, error) {
	start := time.Now()
	// 尝试在所有的节点中加锁
	n, err := m.actOnPoolsAsync(func(pool redis.Pool) (bool, error) {
		return m.touch(ctx, pool, m.value, int(m.expiry/time.Millisecond))
	})
	if n < m.quorum {
		return false, err
	}
	// 判断下锁的过期时间
	now := time.Now()
	until := now.Add(m.expiry - now.Sub(start) - time.Duration(int64(float64(m.expiry)*m.driftFactor)))
	if now.Before(until) {
		m.until = until
		return true, nil
	}
	return false, ErrExtendFailed
}

var touchScript = redis.NewScript(1, `
	// 需要先比较下当前的value值
	if redis.call("GET", KEYS[1]) == ARGV[1] then
		return redis.call("PEXPIRE", KEYS[1], ARGV[2])
	else
		return 0
	end
`)

func (m *Mutex) touch(ctx context.Context, pool redis.Pool, value string, expiry int) (bool, error) {
	conn, err := pool.Get(ctx)
	if err != nil {
		return false, err
	}
	defer conn.Close()
	status, err := conn.Eval(touchScript, m.name, value, expiry)
	if err != nil {
		return false, err
	}
	return status != int64(0), nil
}

1、锁的续租需要客户端去监听和操作,启动一个定时器,固定时间来调用续租函数给锁续租;

2、每次续租操作的时候需要匹配下当前的 value 值,因为锁可能已经被当前的线程释放了,当前的持有者可能是别的线程;

看看 SETEX 的源码

SETEX 能保证只有在 key 不存在时设置 key 的值,那么这里来看看,源码中是如何实现的呢

// https://github.com/redis/redis/blob/7.0/src/t_string.c#L78
// setGenericCommand()函数是以下命令: SET, SETEX, PSETEX, SETNX.的最底层实现
void setGenericCommand(client *c, int flags, robj *key, robj *val, robj *expire, int unit, robj *ok_reply, robj *abort_reply) {
    ...

    found = (lookupKeyWrite(c->db,key) != NULL);
    // 这里是 SETEX 实现的重点
	// 如果nx,并且在数据库中找到了这个值就返回
	// 如果是 xx,并且在数据库中没有找到键值就会返回

	// 因为 Redis 中的命令执行都是单线程操作的
	// 所以命令中判断如果存在就返回,能够保证正确性,不会出现并发访问的问题
    if ((flags & OBJ_SET_NX && found) ||
        (flags & OBJ_SET_XX && !found))
    {
        if (!(flags & OBJ_SET_GET)) {
            addReply(c, abort_reply ? abort_reply : shared.null[c->resp]);
        }
        return;
    }

    ...
}

1、命令的实现里面加入了键值是否存在的判断,来保证 NX 只有在 key 不存在时设置 key 的值;

2、因为 Redis 中总是一个线程处理命令的执行,单命令是能够保证原子性,不会出现并发的问题。

为什么 Redis 可以用来做分布式锁

分布式锁需要满足的特性

  • 互斥性:在任意时刻,对于同一个锁,只有一个客户端能持有,从而保证一个共享资源同一时间只能被一个客户端操作;
  • 安全性:即不会形成死锁,当一个客户端在持有锁的期间崩溃而没有主动解锁的情况下,其持有的锁也能够被正确释放,并保证后续其它客户端能加锁;
  • 可用性:当提供锁服务的节点发生宕机等不可恢复性故障时,“热备” 节点能够接替故障的节点继续提供服务,并保证自身持有的数据与故障节点一致。
  • 对称性:对于任意一个锁,其加锁和解锁必须是同一个客户端,即客户端 A 不能把客户端 B 加的锁给解了。

那么 Redis 对上面的特性是如何支持的呢?

1、Redis 中命令的执行都是单线程的,虽然在 Redis6.0 的版本中,引入了多线程来处理 IO 任务,但是命令的执行依旧是单线程处理的;

2、单线程的特点,能够保证命令的执行的是不存在并发的问题,同时命令执行的原子性也能得到保证;

3、Redis 中提供了针对 SETNX 这样的命令,能够保证同一时刻是只会有一个请求执行成功,提供互斥性的保障;

4、Redis 中也提供了 EXPIRE 超时释放的命令,可以实现锁的超时释放,避免死锁的出现;

5、高可用,针对如果发生主从切换,数据丢失的情况,Redis 引入了 RedLock 算法,保证了 Redis 中主要大部分节点正常运行,锁就可以正常运行;

6、Redis 中本身没有对锁提供续期的操作,不过一些第三方的实现中实现了 Redis 中锁的续期,类似 使用 java 实现的 Redisson,使用 go 实现的 redsync,当然自己实现也不是很难,实现过程可参见上文。

总体来说,Redis 中对分布式锁的一些特性都提供了支持,使用 Redis 实现分布式锁,是一个不错的选择。

分布式锁如何选择

1、如果业务规模不大,qps 很小,使用 Redis,etcd,ZooKeeper 去实现分布式锁都不会有问题,就看公司了基础架构了,如果有现成的 Redis,etcd,ZooKeeper 直接用就可以了;

2、Redis 中分布式锁有一定的安全隐患,如果业务中对安全性要求很高,那么 Redis 可能就不适合了,etcd 或者 ZooKeeper 就比较合适了;

3、如果系统 qps 很大,但是可以容忍一些错误,那么 Redis 可能就更合适了,毕竟 etcd或者ZooKeeper 背面往往都是较低的吞吐量和较高的延迟。

总结

1、在分布式的场景下,使用分布式锁是我们经常遇到的一种场景;

2、使用 Redis 实现锁是个不错的选择,Redis 的单命令的执行是原子性的同时借助于 Lua 也可以很容易的实现组合命令的原子性;

3、针对分布式场景下主从切换,数据同步不及时的情况,redis 中引入了 redLock 来处理分布式锁;

4、根据 martin 的描述,redLock 是繁重的,且存在安全性,不过我们可以根据自己的业务场景做出判断;

5、需要注意的是在设置分布式锁的时候需要设置 value 的唯一性,并且每次主动删除锁的时候需要匹配下 value 的正确性,避免误删除其他线程的锁;

参考

【Redis核心技术与实战】https://time.geekbang.org/column/intro/100056701
【Redis设计与实现】https://book.douban.com/subject/25900156/
【Redis 的学习笔记】https://github.com/boilingfrog/Go-POINT/tree/master/redis
【Redis 分布式锁】https://redis.io/docs/reference/patterns/distributed-locks/
【How to do distributed locking】https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
【etcd 实现分布式锁】https://www.cnblogs.com/ricklz/p/15033193.html#分布式锁
【Redis中的原子操作(3)-使用Redis实现分布式锁】https://boilingfrog.github.io/2022/06/15/Redis中的原子操作 (3)-使用Redis实现分布式锁/

到此这篇关于使用Redis实现分布式锁的方法的文章就介绍到这了,更多相关Redis分布式锁内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Go结合Redis用最简单的方式实现分布式锁

    目录 前言 单Redis实例场景 加解锁示例 小结 多Redis实例场景 加解锁示例 小结 总结 前言 在项目中我们经常有需要使用分布式锁的场景,而Redis是实现分布式锁最常见的一种方式,并且我们也都希望能够把代码写得简单一点,所以今天我们尽量用最简单的方式来实现. 下面的代码使用go-redis客户端和gofakeit,参考和引用了Redis官方文章 单Redis实例场景 如果熟悉Redis的命令,可能会马上想到使用Redis的set if not exists操作来实现,并且现在标准的实现

  • 使用RedisTemplat实现简单的分布式锁

    不使用redisson框架实现Redis分布式锁 准备工作: 导入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId></dependency> 编写RedisConfig类 @Configurationpublic class RedisConfig { @

  • 巧用Redis实现分布式锁详细介绍

    目录 前言 手写Redis分布式锁 Redisson lock() lock(long leaseTime, TimeUnit unit) tryLock(long waitTime, long leaseTime, TimeUnit unit) RedLock红锁 总结 前言 无论是synchronized还是Lock,都运行在线程级别上,必须运行在同一个JVM中.如果竞争资源的进程不在同一个JVM中时,这样线程锁就无法起到作用,必须使用分布式锁来控制多个进程对资源的访问. 分布式锁的实现一般

  • springboot 集成redission 以及分布式锁的使用详解

    目录 springboot集成redission及分布式锁的使用 1.引入jar包 2.增加Configuration类 3.使用redission分布式锁 Springboot整合Redisson 锁 一.依赖 二.配置文件 三.锁的使用 四.分布式秒杀 五.redis锁 单机版可用,分布式用Redisson springboot集成redission及分布式锁的使用 1.引入jar包 <dependency> <groupId>org.redisson</groupId&

  • Redis如何实现分布式锁

    目录 一.前言 二.正文 今天我们来聊一聊分布式锁的那些事. 相信大家对锁已经不陌生了,我们在多线程环境中,如果需要对同一个资源进行操作,为了避免数据不一致,我们需要在操作共享资源之前进行加锁操作.在计算机科学中,锁(lock)或互斥(mutex)是一种同步机制,用于在有许多执行线程的环境中强制对资源的访问限制. 比如你去相亲,发现你和一大哥同时和一个女的相亲,那怎么行呢...,搞不好还要被揍一顿. 那什么是分布式锁呢.当多个客户端需要争抢锁时,我们就需要分布式锁.这把锁不能是某个客户端本地的锁

  • c# 理解csredis库实现分布式锁的详细流程

    声明: 这里首先使用的是csredis,地址是https://github.com/2881099/csredis 该库本身已经足够完善,这里我画蛇添足一下,为了方便自己的使用. 本身csredis库已经实现了完整的加锁和去锁的逻辑,这里实现的与库本身所实现的有以下几点区别(csredis实现代码位置为:https://github.com/2881099/csredis/blob/bb6d947695770333027f3936f80052041db41b64/src/CSRedisCore/

  • Redis分布式锁如何实现续期

    目录 Redis分布式锁如何续期 Redis分布式锁的正确姿势 如何回答 源码分析 真相大白 Redis分布式锁的5个坑 一.锁未被释放 二.B的锁被A给释放了 三.数据库事务超时 四.锁过期了,业务还没执行完 五.redis主从复制的坑 Redis分布式锁如何续期 Redis分布式锁的正确姿势 据肥朝了解,很多同学在用分布式锁时,都是直接百度搜索找一个Redis分布式锁工具类就直接用了.关键是该工具类中还充斥着很多System.out.println();等语句.其实Redis分布式锁比较正确

  • SpringBoot中使用redis做分布式锁的方法

    一.模拟问题 最近在公司遇到一个问题,挂号系统是做的集群,比如启动了两个相同的服务,病人挂号的时候可能会出现同号的情况,比如两个病人挂出来的号都是上午2号.这就出现了问题,由于是集群部署的,所以单纯在代码中的方法中加锁是不能解决这种情况的.下面我将模拟这种情况,用redis做分布式锁来解决这个问题. 1.新建挂号明细表 2.在idea上新建项目 下图是创建好的项目结构,上面那个parent项目是其他项目不用管它,和新建的没有关系 3.开始创建controller,service,dao(mapp

  • 基于Redis实现分布式锁的方法(lua脚本版)

    1.前言 在Java中,我们通过锁来避免由于竞争而造成的数据不一致问题.通常我们使用synchronized .Lock来实现.但是Java中的锁只能保证在同一个JVM进程内中可用,在跨JVM进程,例如分布式系统上则不可靠了. 2.分布式锁 分布式锁,是一种思想,它的实现方式有很多,如基于数据库实现.基于缓存(Redis等)实现.基于Zookeeper实现等等.为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件 互斥性:在任意时刻,只有一个客户端能持有锁. 不会发生死锁:即使客户端

  • 使用Redis实现分布式锁的方法

    目录 Redis 中的分布式锁如何使用 分布式锁的使用场景 使用 Redis 来实现分布式锁 使用 set key value px milliseconds nx 实现 SETNX+Lua 实现 使用 Redlock 实现分布式锁 锁的续租 看看 SETEX 的源码 为什么 Redis 可以用来做分布式锁 分布式锁如何选择 总结 参考 Redis 中的分布式锁如何使用 分布式锁的使用场景 为了保证我们线上服务的并发性和安全性,目前我们的服务一般抛弃了单体应用,采用的都是扩展性很强的分布式架构.

  • Redis实现分布式锁的方法示例

    之前我们使用的定时任务都是只部署在了单台机器上,为了解决单点的问题,为了保证一个任务,只被一台机器执行,就需要考虑锁的问题,于是就花时间研究了这个问题.到底怎样实现一个分布式锁呢? 锁的本质就是互斥,保证任何时候能有一个客户端持有同一个锁,如果考虑使用redis来实现一个分布式锁,最简单的方案就是在实例里面创建一个键值,释放锁的时候,将键值删除.但是一个可靠完善的分布式锁需要考虑的细节比较多,我们就来看看如何写一个正确的分布式锁. 单机版分布式锁 SETNX 所以我们直接基于 redis 的 s

  • Redis数据库中实现分布式锁的方法

    分布式锁是一个在很多环境中非常有用的原语,它是不同进程互斥操作共享资源的唯一方法.有很多的开发库和博客描述如何使用Redis实现DLM(Distributed Lock Manager),但是每个开发库使用不同的方式,而且相比更复杂的设计与实现,很多库使用一些简单低可靠的方式来实现. 这篇文章尝试提供更标准的算法来使用Redis实现分布式锁.我们提出一种算法,叫做Relock,它实现了我们认为比vanilla单一实例方式更安全的DLM(分布式锁管理).我们希望社区分析它并提供反馈,以做为更加复杂

  • Redis实现分布式锁的几种方法总结

    Redis实现分布式锁的几种方法总结 分布式锁是控制分布式系统之间同步访问共享资源的一种方式.在分布式系统中,常常需要协调他们的动作.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁. 我们来假设一个最简单的秒杀场景:数据库里有一张表,column分别是商品ID,和商品ID对应的库存量,秒杀成功就将此商品库存量-1.现在假设有1000个线程来秒杀两件商品,500个线程秒杀第一个商品,

  • 基于redis实现分布式锁的原理与方法

    前言 系统的不断扩大,分布式锁是最基本的保障.与单机的多线程不一样的是,分布式跨多个机器.线程的共享变量无法跨机器. 为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 今天我们介绍通过redis实现分布式锁.实际上这三种和java对比看属于一类.都是属于程序外部锁. 原理剖析 上述三种分布

  • Redis实现分布式锁方法详细

    目录 1. 单机数据一致性 2. 分布式数据一致性 3. Redis实现分布式锁 3.1 方式一 3.2 方式二(改进方式一) 3.3 方式三(改进方式二) 3.4 方式四(改进方式三) 3.5 方式五(改进方式四) 3.6 小结 在单体应用中,如果我们对共享数据不进行加锁操作,会出现数据一致性问题,我们的解决办法通常是加锁. 在分布式架构中,我们同样会遇到数据共享操作问题,本文章使用Redis来解决分布式架构中的数据一致性问题. 1. 单机数据一致性 单机数据一致性架构如下图所示:多个可客户访

  • Redis实现分布式锁的五种方法详解

    目录 1. 单机数据一致性 2. 分布式数据一致性 3. Redis实现分布式锁 3.1 方式一 3.2 方式二(改进方式一) 3.3 方式三(改进方式二) 3.4 方式四(改进方式三) 3.5 方式五(改进方式四) 3.6 小结 在单体应用中,如果我们对共享数据不进行加锁操作,会出现数据一致性问题,我们的解决办法通常是加锁. 在分布式架构中,我们同样会遇到数据共享操作问题,本文章使用Redis来解决分布式架构中的数据一致性问题. 1. 单机数据一致性 单机数据一致性架构如下图所示:多个可客户访

  • 基于Redis实现分布式锁以及任务队列

    一.前言 双十一刚过不久,大家都知道在天猫.京东.苏宁等等电商网站上有很多秒杀活动,例如在某一个时刻抢购一个原价1999现在秒杀价只要999的手机时,会迎来一个用户请求的高峰期,可能会有几十万几百万的并发量,来抢这个手机,在高并发的情形下会对数据库服务器或者是文件服务器应用服务器造成巨大的压力,严重时说不定就宕机了,另一个问题是,秒杀的东西都是有量的,例如一款手机只有10台的量秒杀,那么,在高并发的情况下,成千上万条数据更新数据库(例如10台的量被人抢一台就会在数据集某些记录下 减1),那次这个

随机推荐