R语言差异检验:非参数检验操作

非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态进行推断的方法。它利用数据的大小间的次序关系(秩Rank),而不是具体数值信息,得出推断结论。

它是参数检验所需要的某些条件不满足时所使用的方法。

和参数检验相比,非参数检验的优势如下:

稳健性。对总体分布的条件要求放宽

对数据类型要求不严格,适用有序分类变量

适用范围广

劣势:

没有利用实际数值,损失了部分信息,检验的有效性较差。

非参数性检验的方法非常多,基于方法的检验功效性角度,本文只涉及

双独立样本:Mann-Whitney U检验

双配对样本:Wilcoxon配对秩和检验

多独立样本:Kruskal-Wallis检验

多配对样本:Friedman检验

Mann-Whitney U检验

曼-惠特尼U检验(曼-惠特尼秩和检验),是由H.B.Mann和D.R.Whitney于1947年提出的。它假设两个样本分别来自除了总体均值以外完全相同的两个总体,目的是检验这两个总体的均值是否有显著的差别。

适用条件

双独立样本检验

R语言示例

函数及格式:wilcox.test(y~x,data)

其中,y是连续变量,x是一个二分变量。

也可以使用这种形式:

wilcox.test(y1,y2)

其中,y1和y2为变量名。可选参数data的取值为一个包含这些变量的矩阵或数据框。

示例:

#载入MASS包
library(MASS)
#使用UScrime数据集
#Prob为监禁率,So为是否南方地区
#检验美国监禁率是否存在南方和非南方差异
#wilcox.test检验
wilcox.test(Prob~So,data = UScrime)
#结果
 Wilcoxon rank sum test

data:  Prob by So
W = 81, p-value = 8.488e-05
alternative hypothesis: true location shift is not equal to 0
#结果显示P小于0.001,美国监禁率存在南方和非南方地区差异。

Wilcoxon配对秩和检验

Wilcoxon配对秩和检验是对Sign符号检验的改进。它的假设被归结为总体中位数是否为0。

适用条件

双配对样本检验

R语言示例

Wilcoxon配对秩和检验调用函数格式与Mann-Whitney U检验相同。不同之处在于可以添加paired=TRUE参数。

示例:

#u1(14-24岁年龄段城市男性失业率)
#u2(35-39岁年龄段城市男性失业率)
#检验失业率是否在两个年龄段存在差异
#Wilcoxon配对秩和检验
with(UScrime,wilcox.test(U1,U2,paired = TRUE))
#结果
 Wilcoxon signed rank test with continuity correction

data:  U1 and U2
V = 1128, p-value = 2.464e-09
alternative hypothesis: true location shift is not equal to 0
#结果显示,存在差别。

Kruskal-Wallis检验

由克罗斯考尔和瓦里斯1952年提出,用来解决多独立样本难以满足方差分析条件(独立性、正态性、方差齐性)时统计推断问题。

适用条件

多独立样本检验

R语言示例

函数格式:

kruskal.test(y~A,data)

其中,y为连续变量,A为两个或更多水平的分组变量。

示例:

#检验美国四个地区文盲率是否存在差异
#数据皆来自R自带数据集
#通过state.region数据集获取地区名称,即分组变量。
states <- data.frame(state.region,state.x77)
#调用kruskal.test函数
kruskal.test(Illiteracy~state.region,data = states)
#结果
 Kruskal-Wallis rank sum test

data:  Illiteracy by state.region
Kruskal-Wallis chi-squared = 22.672, df = 3, p-value =
4.726e-05
#结果显示,文盲率存在地区差异。

Friedman检验

Friedman检验也称弗里德曼双向评秩方差分析。由Friedman在1937年提出,基本思想是独立对每一个区组分别对数据进行排秩,消除区组间的差异以检验各种处理之间是否存在差异。

适用条件

多配对样本检验

Fiedman检验在样本量有限的情况下,实际应用价值不大。

R语言示例

函数格式:

friedman.test(y~A|B,data)

其中,y为连续变量,A是一个分组变量,B是一个用以认定匹配观测的区组变量。

或者

friedman.test(data=matrix格式)

其中,data要求矩阵格式。可以通过as.matrix转换

示例:

(虚构)有30名女性分为三组每组10人,试吃三种药。经过一段时间后,药效如下。问三种药药效是否有区别。

药1

4.4,5,5.8,4.6,4.9,4.8,6,5.9,4.3,5.1

药2

6.2,5.2,5.5,5,4.4,5.4,5,6.4,5.8,6.2

药3

7.0,6.2,5.9,6,4.6,6.4,5,6.4,5.8,6.2

#生成数据集
drug1 <- c(4.4,5,5.8,4.6,4.9,4.8,6,5.9,4.3,5.1)
drug2 <- c(6.2,5.2,5.5,5,4.4,5.4,5,6.4,5.8,6.2)
drug3 <- c(7.0,6.2,5.9,6,4.6,6.4,5,6.4,5.8,6.2)
#矩阵
data <- matrix(c(drug1,drug2,drug3),nrow = 10,dimnames = list(ID=1:10,c('drug1','drug2','drug3')))
#查看数据
data

ID   drug1 drug2 drug3
  1    4.4   6.2   7.0
  2    5.0   5.2   6.2
  3    5.8   5.5   5.9
  4    4.6   5.0   6.0
  5    4.9   4.4   4.6
  6    4.8   5.4   6.4
  7    6.0   5.0   5.0
  8    5.9   6.4   6.4
  9    4.3   5.8   5.8
  10   5.1   6.2   6.2
#调用friedman.test函数
friedman.test(data)

 Friedman rank sum test

data:  data
Friedman chi-squared = 6.8889, df = 2, p-value =
0.03192
#结果显示,三种药之间存在区别。

补充:R语言置换检验

置换检验

双样本均值检验的时候,假设检验的方法就是,检查正态性、独立性、方差齐性,分别对应的参数非参数方法进行假设检验,但是,这些方法都要求样本数必须有多少多少,但是,由于试验时,各种条件的限制,导致样本量过小,此时以上方法几乎都会失真,置换检验就应运而生了。

Permutation test 置换检验是Fisher于20世纪30年代提出的一种基于大量计算 (computationally intensive),利用样本数据的全(或随机)排列,进行统计推断的方法,因其对总体分布自由,应用较为广泛,特别适用于总体分布未知的小样本资料,以及某些难以用常规方法分析资料的假设检验问题。在具体使用上它和Bootstrap Methods类似,通过对样本进行顺序上的置换,重新计算统计检验量,构造经验分布,然后在此基础上求出P-value进行推断。

置换检验的操作方法:假设有两组待检数据,A组有m个数据,B组有n个数据,均值差为d0,现把所有数据放在一起进行随机抽取,抽出m个放入A组,剩下n个放入B组,计算A、B两组的均值差记为d1,再放在一起进行随机重抽m、n两组,得到均值差记为d2,重复这个步骤k次得到(d3……dk),于是d1……dk可以画出一张正态图,然后看d0落在什么方,若落在置信水平之外,即可以显著说明它们是有差异的。

R代码如下:

a<-c(24,43,58,67,61,44,67,49,59,52,62,50,42,43,65,26,33,41,19,54,42,20,17,60,37,42,55,28)
group<-factor(c(rep("A",12),rep("B",16)))
data<-data.frame(group,a)
find.mean<-function(x){
    mean(x[group=="A",2])-mean(x[group=="B",2])
}
results<-replicate(999,find.mean(data.frame(group,sample(data[,2]))))
p.value<-length(results[results>mean(data[group=="A",2])-mean(data[group=="B",2])])/1000
hist(results,breaks=20,prob=TRUE)
lines(density(results))

coin包置换检验

coin包介绍

coin包中的置换检验有以下几种:

检 验 coin函数
两样本和K样本置换检验 oneway_test(y ~ A)
含一个分层(区组)因子的两样本和K样本置换检验 oneway_test(y ~ A | C)
Wilcoxon-Mann-Whitney秩和检验 wilcox_test(y ~ A)
Kruskal-Wallis检验 kruskal_test(y ~ A)
Person卡方检验 chisq_test(A ~ B)
Cochran-Mantel-Haenszel检验 cmh_test(A ~ B | C)
线性关联检验 lbl_test(D ~ E)
Spearman检验 spearman_test(y ~ x)
Friedman检验 friedman_test(y ~ A | C)
Wilcoxon符号秩检验 wilcoxsign_test(y1 ~ y2)

注:在上表中,y和x是数值变量,A和B是分类因子,C是类别型区组变量,D和E是有序因子,y1和y2是相匹配的值变量

表中所有的函数使用方法都一样:

functionName(formula,dataframe,distribution),其中distribution指定经验分布在零假设条件下的形式,可能值有exact,asymptotic和approximate,若distribution = "exact",那么在零假设条件下,分布的计算是精确的(即依据所有可能的排列组合)。当然,也可以根据它的渐进分布(distribution = "asymptotic")或蒙特卡洛重抽样(distribution = "approxiamate(B = #)")来做近似计算,其中#指所需重复的次数。distribution = "exact"当前仅可用于两样本问题。

原函数与置换检验比较

函数 简介 程序及结果
t.test() 双样本均值t检验 > score <- c(40, 57, 45, 55, 58, 57, 64, 55, 62, 65) > treatment <- factor(c(rep(“A”, 5), rep(“B”, 5))) > mydata <- data.frame(treatment, score) > t.test(score ~ treatment, data = mydata, var.equal = TRUE)           Two Sample t-test data: score by treatment t = -2.345, df = 8, p-value = 0.04705 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:   -19.0405455    -0.1594545 sample estimates: mean in group A mean in group B      51.0     60.6
oneway_test() 双样本均值置换检验 > oneway_test(score ~ treatment, data = mydata, distribution = “exact”)     Exact Two-Sample Fisher-Pitman Permutation Test data: score by treatment (A, B) Z = -1.9147, p-value = 0.07143 alternative hypothesis: true mu is not equal to 0
wilcox.test() 双样本秩和独立性检验 > wilcox.test(Prob~So,data=UScrime)      Wilcoxon rank sum test data: Prob by So W = 81, p-value = 8.488e-05 alternative hypothesis: true location shift is not equal to 0
wilcox_test() 双样本秩和独立性置换检验 > UScrime2 <- transform(UScrime, So = factor(So)) > wilcox_test(Prob ~ So, data = UScrime2, distribution = “exact”)     Exact Wilcoxon-Mann-Whitney Test data: Prob by So (0, 1) Z = -3.7493, p-value = 8.488e-05 alternative hypothesis: true mu is not equal to 0
aov() 单因素方差分析 > library(multcomp) >summary(aov(response~trt,data=cholesterol))   Df Sum Sq  Mean Sq  F value Pr(>F) trt 4 1351.4   337.8    32.43  9.82e-13 *** Residuals 45 468.8 10.4
oneway_test() K样本置换检验 > oneway_test(response ~ trt, data = cholesterol, distribution = approximate(B = 9999))   Approximative K-Sample Fisher-Pitman Permutation Test data: response by trt (1time, 2times, 4times, drugD, drugE) chi-squared = 36.381, p-value < 2.2e-16
chisq.test() 卡方列联表均值差异检验 > chisq.test(xtabs(~Treatment+Improved,Arthritis))    Pearson's Chi-squared test data: xtabs(~Treatment + Improved, Arthritis) X-squared = 13.055, df = 2, p-value = 0.001463
chisq_test() 卡方置换检验 > chisq_test(Treatment ~ Improved, data = transform(Arthritis, Improved = as.factor(as.numeric(Improved))),distribution = approximate(B = 9999))    Approximative Pearson Chi-Squared Test data: Treatment by Improved (1, 2, 3) chi-squared = 13.055, p-value = 0.0012
mantelhaen.test() 分层卡方检验,看是否把相关因素划分出去 > mytable <- xtabs(~Treatment+Improved+Sex, data=vcd::Arthritis) > mantelhaen.test(mytable)     Cochran-Mantel-Haenszel test data: mytable Cochran-Mantel-Haenszel M^2 = 14.632, df = 2, p-value = 0.0006647
cmh_test() 分层卡方置换检验,看是否把相关因素划分出去 > cmh_test(mytable)    Asymptotic Generalized Cochran-Mantel-Haenszel Test data: Improved by Treatment (Placebo, Treated) stratified by Sex chi-squared = 14.632, df = 2, p-value = 0.0006647
cor() spearman等级相关系数 > with(states,cor(Illiteracy,Murder,method=”spearman”)) [1] 0.6723592
spearman_test() 数值独立性置换检验(两数值变量独立即不相关) > spearman_test(Murder~Illiteracy,data=states)    Asymptotic Spearman Correlation Test data: Murder by Illiteracy Z = 4.7065, p-value = 2.52e-06 alternative hypothesis: true rho is not equal to 0
t.test(paired=T) 非独立样本的配对t检验,检验均值是否相等 > with(MASS::UScrime,t.test(U1,U2,paired=TRUE))      Paired t-test data: U1 and U2 t = 32.407, df = 46, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 57.67003 65.30870 sample estimates: mean of the differences 61.48936
wilcoxsign_test() wilcox符号秩置换检验,检验均值是否相等 > wilcoxsign_test(U1 ~ U2, data = MASS::UScrime,distribution = “exact”)    Exact Wilcoxon-Pratt Signed-Rank Test data: y by x (pos, neg) stratified by block Z = 5.9691, p-value = 1.421e-14 alternative hypothesis: true mu is not equal to 0
friedman_test() 多组别独立性置换检验,检验均值是否相等 > USc<-MASS::UScrime[,c(“U1”,”U2”)] > USc$U3<-sample(as.matrix(USc),47) >friedman_test(value~variable|ID,data=transform(reshape::melt(data.frame(USc,ID=seq(1,47)),id.vars=”ID”),ID=as.factor(ID)))       Asymptotic Friedman Test data: value by variable (U1, U2, U3) stratified by ID chi-squared = 51.384, df = 2, p-value = 6.953e-12

coin包的介绍至此结束,当然还有一个lbl_test()函数未列出,暂时还不晓得有什么用,以后再说。

lmPerm包置换检验

lmPerm包介绍  

lmPerm包可以做非正态理论检验,包含的函数为lmp()以及aovp()两个,它们与lm()和aov()类似,只是多了一个perm参数(perm=”Exact”,”Prob”,”SPR”),参数值”Exact”根据所有可能的排列组合生成精确检验,”Prob”从所有可能的排列中不断抽样,直至估计的标准差在估计的p值0.1之下,判停准则由可选的Ca参数控制,SPR使用贯序概率比检验来判断何时停止抽样。若观测数大于10,perm=”Exact”会自动转化为perm=”Prob”,因为精确检验只适用于小样本问题。   

因为只涉及了两个函数,这个包就不贴代码和结果,仅说明一下差异是什么,

回归(简单、多项式、多元)  

首先是lm与lmp,除了函数的用法多了个perm参数之外,所得结果模板(注意,是模板,而非结果,结果出现差异应该去找数据的问题,如两者结果不一致,则需要重新审视数据的可靠性)存在差异:   

1)少了常数项,但可以通过各变量均值求得,注意,使用coefficients(fit)所得的常数项是错的! 根据回归线必过均值点的定义,可以使用各变量的均值来计算其常数项。如多元分析中的例子计算方式为:

mean(states$Murder)-sum(colMeans(states)[names(coefficients(fit)[c(-1)])]*(coefficients(fit)[c(-1)]))

2)回归系数项中多了Iter一栏,它表示要达到判停准则所需要的迭代次数。

方差分析  

与回归一致,所有使用aov分析的地方都可以使用aovp来代替,区别就是,aov用的是F统计量,而aovp使用的是置换法,Iter为判停准则的迭代次数。   

需要注意的是,aovp使用的是唯一平方和方法,每种效应根据其它效应进行调整,而aov使用的是序贯平方平法,每种效应根据先出现的效应进行调整,这两个方法在不平衡设计中所得结果不同,越不平衡的设计,差异越大。可以在aovp函数里加入参数seqs=TRUE可以生成序贯平方和的计算结果。   

点评  

置换检验真正发挥功用的地方是处理非正态数据(如分布偏倚很大)、存在离群点、样本很小或无法做参数检验等情况。不过,如果初始样本对感兴趣的总体情况代表性很差,即使是置换检验也无法提高推断效果。   

自助法  

置换检验主要用于生成检验零假设的p值,它有助于回答“效应是否存在”这样的问题。不过,置换方法对于获取置信区间和估计测量精度是比较困难的。幸运的是,这正是自助法大显神通的地方。   

自助法的步骤:   

1. 一个样本数为n的样本,进行m次有放回抽样;   

2. 计算并记录样本统计量(比如均值、方差、甚至t检验量等,可以一个,可以多个);   

3. 重复1000到2000次,或者更多,并把它们从小到大进行排序;   

4. 根据双尾95%分位点,即2.5%和97.5%分位数,即为95%置信区间的下限和上限。

boot包  

boot包可以进行自助法抽检,并生成相应的置信区间。   

主要的步骤如下:   

1. 定义函数,返回一个统计值或一个向量(多个统计值),函数要包括indices参数,以便boot()函数用它从每个重复中选择实例,主要是stype参数,默认为i(索引值),还有f(频率)和w(权重),indices可以简定为i;   

2. 用boot(data,sitisctic,R,……)函数生成一个bootobject。   

3. 使用boot.ci(bootobject,conf,type)生成置信区间,其中conf定义置信区间,type定义置信区间类型(即计算方法),包含norm、basic、stud、perc、bca和all(其中norm为正态分布的置信区间计算方法,约两个标准差距离,perc为上下分位数计算方法,stud为t分布计算方法),若返回值为向量,则利用index参数来指定某个变量的置信区间。   

4. 其它相关数据:比如bootobjectt为重复R次的统计量值(一个“R*统计量个数”的矩阵)

最后谨记:置换检验和自助法并不是万能的,它们无法将烂数据转化为好数据。当初始样本对于总体情况的代表性不佳,或者样本量过小而无法准确地反映总体情况,这些方法也是爱莫能助。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • R语言wilcoxon秩和检验及wilcoxon符号秩检验的操作

    说明 wilcoxon秩和及wilcoxon符号秩检验是对原假设的非参数检验,在不需要假设两个样本空间都为正态分布的情况下,测试它们的分布是否完全相同. 操作 #利用mtcars数据 library(stats) data("mtcars") boxplot(mtcars$mpg~mtcars$am,ylab='mpg',names = c('automatic','manual)) #执行wilcoxon秩和检验验证自动档手动档数据分布是否一致 wilcox.test(mpg~am,

  • R语言 检验多重共线性的操作

    函数kappa() df<-data.frame() df_cor=cor(df) kappa(df_cor, exact=T) 当 κ<100κ<100 , 说明共线性程度小: 当 100<κ<1000100<κ<1000 , 有较强的多重共线性: 当 κ>1000κ>1000,存在严重的多重共线性. 函数qr() x<-matrix() qr(x)$rank qr(X)$rank 计算X矩阵的秩,如果不是满秩的,说明其中有xixi可以用其他x

  • R语言-如何实现卡方检验

    卡方检验 在数据统计中,卡方检验是一种很重要的方法. 通常卡方检验的应用主要为: 1. 卡方拟合优度检验 2.卡方独立性检验 本文主要通过使用自己编程的方法实现相关检验. 卡方拟合优度检验 理论: 1.我们先做出0假设:H0:总体服从假定的理论分布 2.我们再构造一个统计量: 3.当n充分大时 4.我们得到该拒绝域 代码 #Chi_square Goodness Of Fit Test #函数说明: #n为所得样本数据:p为理论概率 #alpha为置信水平,df为自由度 cgoft <- fun

  • R语言差异检验:非参数检验操作

    非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态进行推断的方法.它利用数据的大小间的次序关系(秩Rank),而不是具体数值信息,得出推断结论. 它是参数检验所需要的某些条件不满足时所使用的方法. 和参数检验相比,非参数检验的优势如下: 稳健性.对总体分布的条件要求放宽 对数据类型要求不严格,适用有序分类变量 适用范围广 劣势: 没有利用实际数值,损失了部分信息,检验的有效性较差. 非参数性检验的方法非常多,基于方法的检验功效性角度,本文只涉及 双独立样本:Mann-Whi

  • R语言实现二进制文件读写操作

    二进制文件是一个文件,其中包含仅以位和字节形式存储的信息(0和1),它们是不可读的,因为其中的字节转换为包含许多其他不可打印字符的字符和符号,随便我们尝试使用任何文本编辑器读取二进制文件将显示为类似Ø和ð这样的字符. 但是二进制文件必须由特定程序读取才能使用.例如,Microsoft Word程序的二进制文件只能通过Word程序读取到人类可读的形式.这表明,除了人类可读的文本之外,还有更多的信息,如格式化的字符和页码等,它们也与字母数字字符一起存储.最后,二进制文件是一个连续的字节序列. 我们在

  • R语言对CSV文件操作实例讲解

    在 R 语言中,我们可以从存储在 R 语言环境外的文件中读取数据. 我们还可以将数据写入将被操作系统存储和访问的文件. R 语言可以读取和写入各种文件格式,如​csv​,​excel​,​xml​等. 在本章中,我们将学习从​csv​文件读取数据,然后将数据写入​csv​文件. 该文件应该存在于当前工作目录中,以便 R 语言可以读取它. 当然我们也可以设置我们自己的目录并从那里读取文件. 获取和设置工作目录 您可以使用​getwd()​函数检查R语言工作区指向的目录. 您还可以使用​setwd(

  • R语言对Excel文件操作实例

    Microsoft Excel是最广泛使用的电子表格程序,以.xls或.xlsx格式存储数据. R语言可以直接从这些文件使用一些excel特定的包. 很少这样的包是XLConnect,xlsx,gdata等.我们将使用xlsx包. R语言也可以使用这个包写入excel文件. 安装xlsx软件包 您可以在R控制台中使用以下命令来安装"xlsx"软件包. 它可能会要求安装一些额外的软件包这个软件包依赖. 按照具有所需软件包名称的同一命令安装其他软件包. install.packages(&

  • R语言对数据库进行操作的实例详解

    数据是关系数据库系统以规范化格式存储. 因此,要进行统计计算,我们将需要非常先进和复杂的Sql查询. 但R语言可以轻松地连接到许多关系数据库,如MySql,Oracle,Sql服务器等,并从它们获取记录作为数据框. 一旦数据在R语言环境中可用,它就变成正常的R语言数据集,并且可以使用所有强大的包和函数来操作或分析. 在本教程中,我们将使用MySql作为连接到R语言的参考数据库. RMySQL包 R语言有一个名为"RMySQL"的内置包,它提供与MySql数据库之间的本地连接. 您可以使

  • R语言对Web数据操作实例

    许多网站提供数据供其用户使用. 例如,世界卫生组织(WHO)以CSV,txt和XML文件的形式提供健康和医疗信息的报告. 使用R语言程序,我们可以从这些网站以编程方式提取特定数据. R语言中用于从网站中提取数据的一些包是"RCurl",XML"和"stringr",它们用于连接到URL,识别文件所需的链接并将它们下载到本地环境. 安装R语言的包 处理URL和链接到文件需要以下的包. 如果它们在R语言环境中不可用,您可以使用以下命令安装它们. install

  • R语言的Dataframe常用操作使用

    上节我们简单介绍了Dataframe的定义,这节我们具体来看一下Dataframe的操作 首先,数据框的创建函数为 data.frame( ),参考R语言的帮助文档,我们来了解一下data.frame( )的具体用法: Usage data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, fix.empty.names = TRUE, stringsAsFactors = default.stringsAs

  • 基于R语言 数据检验详解

    目录 1.W检验(Shapiro–Wilk(夏皮罗–威克尔)W统计量检验) 2.K检验(经验分布的Kolmogorov-Smirnov检验) 3.相关性检验: 4.T检验 5.正态总体方差检验 6.二项分布总体假设检验 7.Pearson拟合优度χ2检验 8.Fisher精确的独立检验: 9.McNemar检验: 10.秩相关检验 11.Wilcoxon秩检验 1. W检验(Shapiro–Wilk (夏皮罗–威克尔 ) W统计量检验) 目标:检验数据是否符合某正态分布,如:标准正态分布N(0,

  • R语言绘图样式设置操作(符号,线条,颜色,文本属性)

    设置图像样式有两种方法,一种是全局修改,一种只针对一幅图片有效. 全局修改 a<-c(1:10) #全局修改 old_par<-par(no.readonly=TRUE) #记录默认样式到变量old_par中 par(lty=2,pch=17) #设置线型lty=2虚线,pch=17实心三角形,键值对的方式进行设置 #第一幅图,已经和默认样式不一样了 b<-rnorm(10) plot(a,b,type='b') #第二幅图,和第一幅图样式一样 b<-rnorm(10) plot(

  • R语言:排序的应用操作

    工作中遇到过许多看起来挺复杂的数据筛选,本质上都可以用排序解决,这里以R自带的mtcar数据集为例做一个记录. 首先简单介绍一下mtcar数据集,mtcar(Motor Trend Car Road Tests)是一个32行11列的数据集,记录了32种汽车的11种性能,具体数据如下: > mtcars mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 M

随机推荐