python glom模块的使用简介

工欲善其事,必先利其器!我们想要更轻松更有效率地开发,必须学会一些“高级”技能。前不久看到一位 Python 高僧的代码,其中使用了一个短小精悍的模块,我认为还蛮有用的,今天分享给大家。

这个模块就叫 glom ,是 Python 处理数据的一个小模块,它具有如下特点:

  • 嵌套结构并基于路径访问
  • 使用轻量级的Pythonic规范进行声明性数据转换
  • 可读、有意义的错误信息
  • 内置数据探测和调试功能

看起来比较抽象,对不对?下面我们用实例来给大家演示一下。

安装

作为 Python 内置模块,相信你一定知道怎么安装:

pip3 install glom

几秒钟就搞定!

简单使用

我们来看看最简单的用法:

d = {"a": {"b": {"c": 1}}}
print(glom(d, "a.b.c")) # 1

在这里,我们有一个嵌套三层的 json 结构,我们想获取最里层的 c 对应的值,正常的写法应该是:

print(d["a"]["b"]["c"])

如果到这里,我说 glom 比传统方式好一些,因为你不用一层层地写中括号和引号,你会不会嗤之以鼻?

好,我们再来看看下面的情况:

d = {"a": {"b": None}}
print(d["a"]["b"]["c"])

遍历到一个 None 对象,你会收到下面的错误:

Traceback (most recent call last):
  File "/Users/cxhuan/Documents/python_workspace/mypy/pmodules/pglom/glomstudy.py", line 10, in <module>
    print(d["a"]["b"]["c"])
TypeError: 'NoneType' object is not subscriptable

我们来看看 glom 的处理方式:

from glom import glom

d = {"a": {"b": None}}
print(glom(d, "a.b.c"))

同样地,glom 不能把错误的输出成对的,你会得到以下错误:

Traceback (most recent call last):
  File "/Users/cxhuan/Documents/python_workspace/mypy/pmodules/pglom/glomstudy.py", line 11, in <module>
    print(glom(d, "a.b.c"))
  File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/glom/core.py", line 2181, in glom
    raise err
glom.core.PathAccessError: error raised while processing, details below.
 Target-spec trace (most recent last):
 - Target: {'a': {'b': None}}
 - Spec: 'a.b.c'
glom.core.PathAccessError: could not access 'c', part 2 of Path('a', 'b', 'c'), got error: AttributeError("'NoneType' object has no attribute 'c'")

如果你仔细看报错内容,你就会发现这报错内容极其详细,一目了然,这对于找程序 bug 简直是神器!

复杂用法

刚才简单的例子,让大家对 glom 有了直观的认识,接下来我们看看 glom 的 glom 方法的定义:

glom(target, spec, **kwargs)

我们看看参数的含义:

  • target:目标数据,可以是dict、list或者其他任何对象
  • spec:是我们希望输出的内容

下面我们来使用这个方法。

先看一个例子。我们有一个 dict ,想要获取出 所有 name 的值,我们可以通过 glom 来实现:

data = {"student": {"info": [{"name": "张三"}, {"name": "李四"}]}}
info = glom(data, ("student.info", ["name"]))
print(info) # ['张三', '李四']

如果用传统方式的话,我们可能会需要遍历才能获取到,但是使用 glom ,我们只需要一行代码就可以了,输出是一个数组。

如果你不想输出数组,而是想要一个 dict 的话,那也是很简单的:

info = glom(data, {"info": ("student.info", ["name"])})
print(info) # {'info': ['张三', '李四']

我们只需要将原来的数组赋值给一个字典来接收就好了。

搞定麻烦需求

假如我现在有两组数据,我要取出 name 的值:

data_1 = {"school": {"student": [{"name": "张三"}, {"name": "李四"}]}}
data_2 = {"school": {"teacher": [{"name": "王老师"}, {"name": "赵老师"}]}}

spec_1 = {"name": ("school.student", ["name"])}
spec_2 = {"name": ("school.teacher", ["name"])}
print(glom(data_1, spec_1)) # {'name': ['张三', '李四']}
print(glom(data_2, spec_2)) # {'name': ['王老师', '赵老师']}

我们通常是这么写,对吗?假如我们有好多组数据,每组都是类似的取法呢?这时候我们就会想办法避免一个个重复写 N 行参数了,我们可以使用 Coalesce 方法:

data_1 = {"school": {"student": [{"name": "张三"}, {"name": "李四"}]}}
data_2 = {"school": {"teacher": [{"name": "王老师"}, {"name": "赵老师"}]}}

spec = {"name": (Coalesce("school.student", "school.teacher"), ["name"])}
 
print(glom(data_1, spec)) # {'name': ['张三', '李四']}
print(glom(data_2, spec)) # {'name': ['王老师', '赵老师']}

我们可以用 Coalesce 把多个需求聚合起来,然后针对同一个 spec 来取值就行了。

下面再来一个大杀器——取值计算。glom 还可以对取值进行简单计算,我们来看例子:

data = {"school": {"student": [{"name": "张三", "age": 8}, {"name": "李四", "age": 10}]}}
spec = {"sum_age": ("school.student", ["age"], sum)}
print(glom(data, spec)) # {'sum_age': 18}

总结

介绍了这么多,大家应该知道 glom 的厉害之处了吧,据说很多大佬都喜欢使用呢。其实它还有很多其他的实用功能有待大家去发掘,这里就不一一介绍了。

以上就是python glom模块的使用简介的详细内容,更多关于python glom模块的资料请关注我们其它相关文章!

(0)

相关推荐

  • 13个最常用的Python深度学习库介绍

    如果你对深度学习和卷积神经网络感兴趣,但是并不知道从哪里开始,也不知道使用哪种库,那么这里就为你提供了许多帮助. 在这篇文章里,我详细解读了9个我最喜欢的Python深度学习库. 这个名单并不详尽,它只是我在计算机视觉的职业生涯中使用并在某个时间段发现特别有用的一个库的列表. 这其中的一些库我比别人用的多很多,尤其是Keras.mxnet和sklearn-theano. 其他的一些我是间接的使用,比如Theano和TensorFlow(库包括Keras.deepy和Blocks等). 另外的我只

  • 理解深度学习之深度学习简介

    机器学习 在吴恩达老师的课程中,有过对机器学习的定义: ML:<P T E> P即performance,T即Task,E即Experience,机器学习是对一个Task,根据Experience,去提升Performance: 在机器学习中,神经网络的地位越来越重要,实践发现,非线性的激活函数有助于神经网络拟合分布,效果明显优于线性分类器: y=Wx+b 常用激活函数有ReLU,sigmoid,tanh: sigmoid将值映射到(0,1): tanh会将输入映射到(-1,1)区间: #激活

  • 深度学习详解之初试机器学习

    机器学习可应用在各个方面,本篇将在系统性进入机器学习方向前,初步认识机器学习,利用线性回归预测波士顿房价: 原理简介 利用线性回归最简单的形式预测房价,只需要把它当做是一次线性函数y=kx+b即可.我要做的就是利用已有数据,去学习得到这条直线,有了这条直线,则对于某个特征x(比如住宅平均房间数)的任意取值,都可以找到直线上对应的房价y,也就是模型的预测值. 从上面的问题看出,这应该是一个有监督学习中的回归问题,待学习的参数为实数k和实数b(因为就只有一个特征x),从样本集合sample中取出一对

  • Python 的lru_cache装饰器使用简介

    Python 的 lru_cache 装饰器是一个为自定义函数提供缓存功能的装饰器.其内部会在下次以相同参数调用该自定义函数时直接返回计算好的结果.通过缓存计算结果可以很好地提升性能. 1 从示例说起 假设我们有一个计算斐波那契数列的求和函数,其内部采用递归方式实现. from xxx.clock_decorator import clock @clock def fibonacci(n): if n<2: return n return fibonacci(n-2)+fibonacci(n-1

  • python glom模块的使用简介

    工欲善其事,必先利其器!我们想要更轻松更有效率地开发,必须学会一些"高级"技能.前不久看到一位 Python 高僧的代码,其中使用了一个短小精悍的模块,我认为还蛮有用的,今天分享给大家. 这个模块就叫 glom ,是 Python 处理数据的一个小模块,它具有如下特点: 嵌套结构并基于路径访问 使用轻量级的Pythonic规范进行声明性数据转换 可读.有意义的错误信息 内置数据探测和调试功能 看起来比较抽象,对不对?下面我们用实例来给大家演示一下. 安装 作为 Python 内置模块,

  • python process模块的使用简介

    process模块 process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建. 参数介绍: Process(group=None, target=None, name=None, args=(), kwargs={}) ​ 1 group--参数未使用,值始终为None 2 target--表示调用对象,即子进程要执行的任务 3 args--表示调用对象的位置参数元组,args=(1,2,'egon',) 4 kwargs--表示调用对象的字典,kwargs={'name':'

  • python Zmail模块简介与使用示例

    介绍 Zmail 使得在python3中发送和接受邮件变得更简单.你不需要手动添加服务器地址.端口以及适合的协议,zmail会帮你完成.此外,使用一个python字典来代表邮件内容也更符合直觉 安装 Zmail仅支持python3,不需要任何外部依赖. 不支持python2. pip3 install zmail 特性 自动寻找服务器地址以及端口 自动使用可靠的链接协议 自动将一个python字典映射成MIME对象(带有附件的) 自动添加头文件以及localhostname来避免服务器拒收你的邮

  • python 绘图模块matplotlib的使用简介

    上周对线上某几个磁盘进行了fio硬盘性能测试,测试完成之后的结果需要绘制成图像展示出来.我在官网上查找了一下fio自带的命令fio_generate_plot和fio2gnuplot工具的用法,找到了图像的绘制方法,在某一个单一的场景下,确实可以使用这两个工具来进行硬盘性能图像绘制,但是问题是,如果要对比多个场景下绘制出来的图像的差异,fio自带的绘图工具实现起来就有些困难了,但是确实也能实现.例如下图: 如图所示为磁盘iodepth不变,numjobs在(1,8,16)三种不同的场景下绘制出来

  • 解读python logging模块的使用方法

    1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 1.可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息: 2.print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据:logging则可以由开发者决定将信息输出到什么地方,以及怎么输出: logging框架中主要由四个部分组成: Loggers: 可供

  • python XlsxWriter模块创建aexcel表格的实例讲解

    安装使用pip install XlsxWriter来安装,Xlsxwriter用来创建excel表格,功能很强大,下面具体介绍: 1.简单使用excel的实例: #coding:utf-8 import xlsxwriter workbook = xlsxwriter.Workbook('d:\\suq\\test\\demo1.xlsx') #创建一个excel文件 worksheet = workbook.add_worksheet('TEST') #在文件中创建一个名为TEST的shee

  • Python subprocess模块功能与常见用法实例详解

    本文实例讲述了Python subprocess模块功能与常见用法.分享给大家供大家参考,具体如下: 一.简介 subprocess最早在2.4版本引入.用来生成子进程,并可以通过管道连接他们的输入/输出/错误,以及获得他们的返回值. subprocess用来替换多个旧模块和函数: os.system os.spawn* os.popen* popen2.* commands.* 运行python的时候,我们都是在创建并运行一个进程,linux中一个进程可以fork一个子进程,并让这个子进程ex

  • Python argparse模块应用实例解析

    这篇文章主要介绍了Python argparse模块应用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 简介 argparse是python用于解析命令行参数和选项的标准模块.argparse模块的作用是用于解析命令行参数. 使用步骤 1.首先导入该模块 2.然后创建一个解析对象 3.然后向该对象中添加你要关注的命令行参数和选项,每一个add_argument方法对应一个你要关注的参数或选项 4.最后调用parse_args()方法进行

  • Python压缩模块zipfile实现原理及用法解析

    一.python压缩模块简介 python直接通过内置压缩模块可以直接进行压缩文件的创建: 内置模块 zipfile/rarfile 完成压缩文件的操作. 二. zipfile模块基础使用 2.1 对一个文件进行zip压缩 # 把当前目录的test.txt文件压缩到a.zip压缩包中 import zipfile f = zipfile.ZipFile('a.zip', 'w', zipfile.ZIP_DEFLATED) f.write('test.txt') f.close() 上述代码中:

  • python Matplotlib模块的使用

    一.Matplotlib简介与安装 Matplotlib也就是Matrix Plot Library,顾名思义,是Python的绘图库.它可与NumPy一起使用,提供了一种有效的MATLAB开源替代方案.它也可以和图形工具包一起使用,如PyQt和wxPython. 安装方式:执行命令 pip install matplotlib 一般常用的是它的子包PyPlot,提供类似MATLAB的绘图框架. 二.使用方法 1.绘制一条直线 y = 3 * x + 4,其中 x 在(-2, 2),取100个点

随机推荐