pyspark 随机森林的实现

随机森林是由许多决策树构成,是一种有监督机器学习方法,可以用于分类和回归,通过合并汇总来自个体决策树的结果来进行预测,采用多数选票作为分类结果,采用预测结果平均值作为回归结果。

“森林”的概念很好理解,“随机”是针对森林中的每一颗决策树,有两种含义:第一种随机是数据采样随机,构建决策树的训练数据集通过有放回的随机采样,并且只会选择一定百分比的样本,这样可以在数据集合存在噪声点、异常点的情况下,有些决策树的构造过程中不会选择到这些噪声点、异常点从而达到一定的泛化作用在一定程度上抑制过拟合;第二种随机是特征随机,训练集会包含一系列特征,随机选择一部分特征进行决策树的构建。通过这些差异点来训练的每一颗决策树都会学习输入与输出的关系,随机森林的强大之处也就在于此。

废话不多说,直接上代码:

from pyspark import SparkConf
from pyspark.sql import SparkSession
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import StringIndexer
from pyspark.ml.classification import RandomForestClassifier
from pyspark.sql import Row
import pandas as pd
from sklearn import metrics

if __name__ == "__main__":
  appname = "RandomForestClassifier"
  master ="local[4]"
  conf = SparkConf().setAppName(appname).setMaster(master) #spark配置
  spark=SparkSession.builder.config(conf=conf).getOrCreate()#spark实例化

#读取数据
  data=spark.read.csv('良恶性乳腺癌数据.csv',header=True)

#构造训练数据集
  dataSet = data.na.fill('0').rdd.map(list)#用0填充空值
  trainData, testData= dataSet.randomSplit([0.7, 0.3], seed=7)
  trainingSet = trainData.map(lambda x:Row(label=x[-1], features=Vectors.dense(x[:-1]))).toDF()
  train_num = trainingSet.count()
  print("训练样本数:{}".format(train_num))

#使用随机森林进行训练
  stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
  si_model = stringIndexer.fit(trainingSet)
  train_tf = si_model.transform(trainingSet)
  train_tf.show(5)
  rf = RandomForestClassifier(numTrees=100, labelCol="indexed", seed=7)
  rfModel = rf.fit(train_tf)

#输出模型特征重要性、子树权重
  print("模型特征重要性:{}".format(rfModel.featureImportances))
  print("模型特征数:{}".format(rfModel.numFeatures))

#预测测试集
  testSet = testData.map(lambda x:Row(label=x[-1], features=Vectors.dense(x[:-1]))).toDF()
  test_num=testSet.count()
  print("测试样本数:{}".format(test_num))
  si_model = stringIndexer.fit(testSet)
  test_tf = si_model.transform(testSet)
  predictResult = rfModel.transform(test_tf)
  predictResult.show(5)
  spark.stop()

#将预测结果转为python中的dataframe
  columns=predictResult.columns#提取强表字段
  predictResult=predictResult.take(test_num)#
  predictResult=pd.DataFrame(predictResult,columns=columns)#转为python中的dataframe

#性能评估
  y=list(predictResult['indexed'])
  y_pred=list(predictResult['prediction'])
  y_predprob=[x[1] for x in list(predictResult['probability'])]
  precision_score=metrics.precision_score(y, y_pred)#精确率
  recall_score=metrics.recall_score(y, y_pred)#召回率
  accuracy_score=metrics.accuracy_score(y, y_pred)#准确率
  f1_score=metrics.f1_score(y, y_pred)#F1分数
  auc_score=metrics.roc_auc_score(y, y_predprob)#auc分数
  print("精确率:",precision_score )#精确率
  print("召回率:",recall_score )#召回率
  print("准确率:",accuracy_score )#准确率
  print("F1分数:", f1_score)#F1分数
  print("auc分数:",auc_score )#auc分数

运行结果:

到此这篇关于pyspark 随机森林的实现的文章就介绍到这了,更多相关pyspark 随机森林内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Pyspark获取并处理RDD数据代码实例

    弹性分布式数据集(RDD)是一组不可变的JVM对象的分布集,可以用于执行高速运算,它是Apache Spark的核心. 在pyspark中获取和处理RDD数据集的方法如下: 1. 首先是导入库和环境配置(本测试在linux的pycharm上完成) import os from pyspark import SparkContext, SparkConf from pyspark.sql.session import SparkSession os.environ["PYSPARK_PYTHON&

  • pyspark给dataframe增加新的一列的实现示例

    熟悉pandas的pythoner 应该知道给dataframe增加一列很容易,直接以字典形式指定就好了,pyspark中就不同了,摸索了一下,可以使用如下方式增加 from pyspark import SparkContext from pyspark import SparkConf from pypsark.sql import SparkSession from pyspark.sql import functions spark = SparkSession.builder.conf

  • Pyspark读取parquet数据过程解析

    parquet数据:列式存储结构,由Twitter和Cloudera合作开发,相比于行式存储,其特点是: 可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量:压缩编码可以降低磁盘存储空间,使用更高效的压缩编码节约存储空间:只读取需要的列,支持向量运算,能够获取更好的扫描性能. 那么我们怎么在pyspark中读取和使用parquet数据呢?我以local模式,linux下的pycharm执行作说明. 首先,导入库文件和配置环境: import os from pyspark import

  • pyspark 读取csv文件创建DataFrame的两种方法

    方法一:用pandas辅助 from pyspark import SparkContext from pyspark.sql import SQLContext import pandas as pd sc = SparkContext() sqlContext=SQLContext(sc) df=pd.read_csv(r'game-clicks.csv') sdf=sqlc.createDataFrame(df) 方法二:纯spark from pyspark import SparkCo

  • 浅谈PySpark SQL 相关知识介绍

    1 大数据简介 大数据是这个时代最热门的话题之一.但是什么是大数据呢?它描述了一个庞大的数据集,并且正在以惊人的速度增长.大数据除了体积(Volume)和速度(velocity)外,数据的多样性(variety)和准确性(veracity)也是大数据的一大特点.让我们详细讨论体积.速度.多样性和准确性.这些也被称为大数据的4V特征. 1.1 Volume 数据体积(Volume)指定要处理的数据量.对于大量数据,我们需要大型机器或分布式系统.计算时间随数据量的增加而增加.所以如果我们能并行化计算

  • pyspark操作MongoDB的方法步骤

    如何导入数据 数据可能有各种格式,虽然常见的是HDFS,但是因为在Python爬虫中数据库用的比较多的是MongoDB,所以这里会重点说说如何用spark导入MongoDB中的数据. 当然,首先你需要在自己电脑上安装spark环境,简单说下,在这里下载spark,同时需要配置好JAVA,Scala环境. 这里建议使用Jupyter notebook,会比较方便,在环境变量中这样设置 PYSPARK_DRIVER_PYTHON=jupyter PYSPARK_DRIVER_PYTHON_OPTS=

  • pyspark 随机森林的实现

    随机森林是由许多决策树构成,是一种有监督机器学习方法,可以用于分类和回归,通过合并汇总来自个体决策树的结果来进行预测,采用多数选票作为分类结果,采用预测结果平均值作为回归结果. "森林"的概念很好理解,"随机"是针对森林中的每一颗决策树,有两种含义:第一种随机是数据采样随机,构建决策树的训练数据集通过有放回的随机采样,并且只会选择一定百分比的样本,这样可以在数据集合存在噪声点.异常点的情况下,有些决策树的构造过程中不会选择到这些噪声点.异常点从而达到一定的泛化作用在

  • 用Python实现随机森林算法的示例

    拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态). 随机森林算法(Random forest algorithm)是对 bagging 算法的扩展.除了仍然根据从训练数据样本建立复合模型之外,随机森林对用做构建树(tree)的数据特征做了一定限制,使得生成的决策树之间没有关联,

  • java实现随机森林RandomForest的示例代码

    随机森林是由多棵树组成的分类或回归方法.主要思想来源于Bagging算法,Bagging技术思想主要是给定一弱分类器及训练集,让该学习算法训练多轮,每轮的训练集由原始训练集中有放回的随机抽取,大小一般跟原始训练集相当,这样依次训练多个弱分类器,最终的分类由这些弱分类器组合,对于分类问题一般采用多数投票法,对于回归问题一般采用简单平均法.随机森林在bagging的基础上,每个弱分类器都是决策树,决策树的生成过程中中,在属性的选择上增加了依一定概率选择属性,在这些属性中选择最佳属性及分割点,传统做法

  • python实现随机森林random forest的原理及方法

    引言 想通过随机森林来获取数据的主要特征 1.理论 随机森林是一个高度灵活的机器学习方法,拥有广泛的应用前景,从市场营销到医疗保健保险. 既可以用来做市场营销模拟的建模,统计客户来源,保留和流失.也可用来预测疾病的风险和病患者的易感性. 根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系,可同时生成的并行化方法: 前者的代表是Boosting,后者的代表是Bagging和"随机森林"(

  • Python决策树和随机森林算法实例详解

    本文实例讲述了Python决策树和随机森林算法.分享给大家供大家参考,具体如下: 决策树和随机森林都是常用的分类算法,它们的判断逻辑和人的思维方式非常类似,人们常常在遇到多个条件组合问题的时候,也通常可以画出一颗决策树来帮助决策判断.本文简要介绍了决策树和随机森林的算法以及实现,并使用随机森林算法和决策树算法来检测FTP暴力破解和POP3暴力破解,详细代码可以参考: https://github.com/traviszeng/MLWithWebSecurity 决策树算法 决策树表现了对象属性和

  • python实现决策树、随机森林的简单原理

    本文申明:此文为学习记录过程,中间多处引用大师讲义和内容. 一.概念 决策树(Decision Tree)是一种简单但是广泛使用的分类器.通过训练数据构建决策树,可以高效的对未知的数据进行分类.决策数有两大优点:1)决策树模型可以读性好,具有描述性,有助于人工分析:2)效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度. 看了一遍概念后,我们先从一个简单的案例开始,如下图我们样本: 对于上面的样本数据,根据不同特征值我们最后是选择是否约会,我们先自定义的一个决策树

  • python 随机森林算法及其优化详解

    前言 优化随机森林算法,正确率提高1%~5%(已经有90%+的正确率,再调高会导致过拟合) 论文当然是参考的,毕竟出现早的算法都被人研究烂了,什么优化基本都做过.而人类最高明之处就是懂得利用前人总结的经验和制造的工具(说了这么多就是为偷懒找借口.hhhh) 优化思路 1. 计算传统模型准确率 2. 计算设定树木颗数时最佳树深度,以最佳深度重新生成随机森林 3. 计算新生成森林中每棵树的AUC,选取AUC靠前的一定百分比的树 4. 通过计算各个树的数据相似度,排除相似度超过设定值且AUC较小的树

  • 基于Spark实现随机森林代码

    本文实例为大家分享了基于Spark实现随机森林的具体代码,供大家参考,具体内容如下 public class RandomForestClassficationTest extends TestCase implements Serializable { /** * */ private static final long serialVersionUID = 7802523720751354318L; class PredictResult implements Serializable{ /

  • Spark随机森林实现票房预测

    前言 最近一段时间都在处理电影领域的数据, 而电影票房预测是电影领域数据建模中的一个重要模块, 所以我们针对电影数据做了票房预测建模. 前期工作 一开始的做法是将这个问题看待成回归的问题, 采用GBDT回归树去做. 训练了不同残差的回归树, 然后做集成学习. 考虑的影响因子分别有电影的类型, 豆瓣评分, 导演的 影响力, 演员的影响力, 电影的出品公司. 不过预测的结果并不是那么理想, 准确率为真实值的0.3+/-区间情况下的80%, 且波动性较大, 不容易解析. 后期的改进 总结之前的失败经验

  • python实现H2O中的随机森林算法介绍及其项目实战

    H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator H2ORandomForestEstimator 的常用方法和参数介绍: (一)建模方法: model =H2ORandomForestEstimator(ntrees=n,max_depth =m) model.train(x=random_pv.names,y='Catrgory',train

随机推荐