python遗传算法之单/多目标规划问题

目录
  • 1. 运行环境
  • 2. 面向对象的原理
  • 3. 带约束的单目标优化问题
    • 3.1 继承 Problem 问题类完成对问题模型的描述
    • 3.2 调用算法模板进行求解
    • 3.3 结果
  • 4. 带约束的多目标优化问题
    • 4.1 继承 Problem 问题类完成对问题模型的描述
    • 4.2 调用算法模板进行求解
    • 4.3 结果
  • 5. 参考资料

在上一篇博客中,我们学习了python遗传算法包geatpy。并用它展示了一个不带约束的单目标规划问题,对往期内容感兴趣的同学可以参考:

链接: python遗传算法之geatpy学习.

在上一期的介绍中,我们用遗传算法求解时,采用的是类似matlab式的非面向对象编程,导致每一步写的都很繁琐,今天我们采用面向对象编程的方式来简化求解过程。

1. 运行环境

这里先介绍一下运行环境

  • 系统:Windows10
  • 配置:i7-6700 16G
  • python版本:3.10
  • geatpy版本:2.7.0

2. 面向对象的原理

前面的章节中,我们介绍了遗传算法主要分为算法模板类 (Algorithm)、种群类 (Population)、多染色体混合编码种群类 (PsyPopulation) 以及问题类 (Problem)。其中 Population 类和 PsyPopulation 类是可以直接被实例化成对象去来使用的类;Algorithm 类和 Problem 类是父类,需要实例化其子类来使用。下面我们通过案例来演示一下用法。

3. 带约束的单目标优化问题

3.1 继承 Problem 问题类完成对问题模型的描述

在这一步中,主要是将我们的问题按照模板描述清楚,包括目标函数和约束条件。

import numpy as np
import geatpy as ea
class MyProblem(ea.Problem): # 继承Problem父类
    def __init__(self):
        name = 'MyProblem'  # 初始化name(函数名称,可以随意设置)

        M = 1  # 初始化M(目标维数)
        maxormins = [-1]  # 初始化目标最小最大化标记列表,1:min;-1:max
        Dim = 3  # 初始化Dim(决策变量维数)
        varTypes = [0] * Dim  # 初始化决策变量类型,0:连续;1:离散
        lb = [0, 0, 0]  # 决策变量下界
        ub = [1, 1, 2]  # 决策变量上界
        lbin = [1, 1, 0]  # 决策变量下边界
        ubin = [1, 1, 0]  # 决策变量上边界
        # 调用父类构造方法完成实例化
        ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb,
                        ub, lbin, ubin)

    def aimFunc(self, pop):  # 目标函数,pop为传入的种群对象
        Vars = pop.Phen  # 得到决策变量矩阵

        x1 = Vars[:, [0]]  # 取出第一列得到所有个体的x1组成的列向量
        x2 = Vars[:, [1]]  # 取出第二列得到所有个体的x2组成的列向量
        x3 = Vars[:, [2]]  # 取出第三列得到所有个体的x3组成的列向量 # 计算目标函数值,赋值给pop种群对象的ObjV属性
        pop.ObjV = 4 * x1 + 2 * x2 + x3
        # 采用可行性法则处理约束,生成种群个体违反约束程度矩阵
        pop.CV = np.hstack([2 * x1 + x2 - 1,  # 第一个约束
                        x1 + 2 * x3 - 2,  # 第二个约束
                        np.abs(x1 + x2 + x3 - 1)])  # 第三个约束

3.2 调用算法模板进行求解

在第二步中,我们主要编写的是算法模板对第一步中问题的定义进行求解,这里需要依次设置种群、算法参数、种群进化、结果的输出。

"""main_solve.py"""
import geatpy as ea # import geatpy
from myaim import MyProblem # 导入自定义问题接口
"""============================实例化问题对象========================"""
problem = MyProblem() # 实例化问题对象
"""==============================种群设置==========================="""
Encoding = 'RI' # 编码方式
NIND = 50 # 种群规模
Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,problem.borders) # 创建区域描述器
population = ea.Population(Encoding, Field, NIND) # 实例化种群对象(此时种群还没被真正初始化,仅仅是生成一个种群对象)
"""===========================算法参数设置=========================="""
myAlgorithm = ea.soea_DE_best_1_L_templet(problem, population) # 实例化一个算法模板对象
myAlgorithm.MAXGEN = 1000 # 最大进化代数
myAlgorithm.mutOper.F = 0.5 # 差分进化中的参数F
myAlgorithm.recOper.XOVR = 0.7 # 设置交叉概率
myAlgorithm.logTras = 1 # 设置每隔多少代记录日志,若设置成0则表示不记录日志
myAlgorithm.verbose = True # 设置是否打印输出日志信息
myAlgorithm.drawing = 1 # 设置绘图方式(0:不绘图;1:绘制结果图;2:绘制目标空间过程动画;3:绘制决策空间过程动画)
"""==========================调用算法模板进行种群进化==============="""
[BestIndi, population] = myAlgorithm.run() # 执行算法模板,得到最优个体以及最后一代种群
BestIndi.save() # 把最优个体的信息保存到文件中
"""=================================输出结果======================="""
print('评价次数:%s' % myAlgorithm.evalsNum)
print('时间花费 %s 秒' % myAlgorithm.passTime)
if BestIndi.sizes != 0:
    print('最优的目标函数值为:%s' % BestIndi.ObjV[0][0])
    print('最优的控制变量值为:')
    for i in range(BestIndi.Phen.shape[1]):
        print(BestIndi.Phen[0, i])
else:
    print('此次未找到可行解。')

3.3 结果

种群进化的结果为:

最终的结果为:

4. 带约束的多目标优化问题

4.1 继承 Problem 问题类完成对问题模型的描述

对于多目标的问题,依旧是先编写目标规划问题。

import numpy as np
import geatpy as ea
class MyProblem(ea.Problem): # 继承Problem父类
    def __init__(self):
        name = 'BNH' # 初始化name(函数名称,可以随意设置)
        M = 2 # 初始化M(目标维数)
        maxormins = [1] * M # 初始化maxormins
        Dim = 2 # 初始化Dim(决策变量维数)
        varTypes = [0] * Dim # 初始化varTypes(决策变量的类型,0:实数;1:整数)
        lb = [0] * Dim # 决策变量下界
        ub = [5, 3] # 决策变量上界
        lbin = [1] * Dim # 决策变量下边界
        ubin = [1] * Dim # 决策变量上边界 # 调用父类构造方法完成实例化
        ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb,ub, lbin, ubin)
    def aimFunc(self, pop): # 目标函数
        Vars = pop.Phen # 得到决策变量矩阵
        x1 = Vars[:, [0]] # 注意这样得到的x1是一个列向量,表示所有个体的x1
        x2 = Vars[:, [1]]
        f1 = 4*x1**2 + 4*x2**2
        f2 = (x1 - 5)**2 + (x2 - 5)**2
        # 采用可行性法则处理约束
        pop.CV = np.hstack([(x1 - 5)**2 + x2**2 - 25,-(x1 - 8)**2 - (x2 - 3)**2 + 7.7])
        # 把求得的目标函数值赋值给种群pop的ObjV
        pop.ObjV = np.hstack([f1, f2])

     ## 目标函数主要需要计算出CV和ObjV

4.2 调用算法模板进行求解

模板求解,和单目标规划类似。

import geatpy as ea # import geatpy
from ga_more_aim import MyProblem # 导入自定义问题接口
import numpy as np
"""=======================实例化问题对象==========================="""
problem = MyProblem() # 实例化问题对象
"""=========================种群设置=============================="""
Encoding = 'RI' # 编码方式
NIND = 100 # 种群规模
Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,problem.borders) # 创建区域描述器
population = ea.Population(Encoding, Field, NIND) # 实例化种群对象(此时种群还没被真正初始化,仅仅是生成一个种群对象)
"""=========================算法参数设置============================"""
myAlgorithm = ea.moea_NSGA2_templet(problem, population) # 实例化一个算法模板对象
myAlgorithm.mutOper.Pm = 0.2 # 修改变异算子的变异概率
myAlgorithm.recOper.XOVR = 0.9 # 修改交叉算子的交叉概率
myAlgorithm.MAXGEN = 200 # 最大进化代数
myAlgorithm.logTras = 1 # 设置每多少代记录日志,若设置成0则表示不记录日志
myAlgorithm.verbose = False # 设置是否打印输出日志信息
myAlgorithm.drawing = 1 # 设置绘图方式(0:不绘图;1:绘制结果图;2:绘制目标空间过程动画;3:绘制决策空间过程动画)
"""==========================调用算法模板进行种群进化==============
调用run执行算法模板,得到帕累托最优解集NDSet以及最后一代种群。
NDSet是一个种群类Population的对象。
NDSet.ObjV为最优解个体的目标函数值;NDSet.Phen为对应的决策变量值。
详见Population.py中关于种群类的定义。
"""
[NDSet, population] = myAlgorithm.run() # 执行算法模板,得到非支配种群以及最后一代种群
NDSet.save() # 把非支配种群的信息保存到文件中
"""===========================输出结果========================"""
print('用时:%s 秒' % myAlgorithm.passTime)
print('非支配个体数:%d 个' % NDSet.sizes) if NDSet.sizes != 0 else print('没有找到可行解!')
if myAlgorithm.log is not None and NDSet.sizes != 0:
    print('GD', myAlgorithm.log['gd'][-1])
    print('IGD', myAlgorithm.log['igd'][-1])
    print('HV', myAlgorithm.log['hv'][-1])
    print('Spacing', myAlgorithm.log['spacing'][-1])
"""======================进化过程指标追踪分析=================="""
metricName = [['igd'], ['hv']]
Metrics = np.array([myAlgorithm.log[metricName[i][0]] for i in range(len(metricName))]).T
# 绘制指标追踪分析图
ea.trcplot(Metrics, labels=metricName, titles=metricName)

4.3 结果

很多初学者可能不太清楚评价多目标规划的一些指标GD、IGD、HV等,这里给大家参考: 多目标进化算法的性能评价指标总结.

帕累托前沿结果:

hv的趋势:

最后结果:

5. 参考资料

geatpy官网教程: https://geatpy.com.

多目标规划评价指标: 多目标进化算法的性能评价指标总结.

到此这篇关于python遗传算法之单/多目标规划问题的文章就介绍到这了,更多相关python 单/多目标规划 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 遗传算法之Python实现代码

    写在前面 之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了.这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以及基本的内容了,假设大家已经知道我是怎么写遗传算法的了. Python的遗传算法主函数 我的思想是,创建一个染色体的类,其中包括了两个变量:染色体chrom与适应度fitness.因此我们就可以通过直接建立对象来作为种群中的个体. #染色体的类 class Chrom: chrom = [] fitness = 0 def showCh

  • Python使用遗传算法解决最大流问题

    本文为大家分享了Python遗传算法解决最大流问题,供大家参考,具体内容如下 Generate_matrix def Generate_matrix(x,y): import numpy as np import random return np.ceil(np.array([random.random()*10 for i in range(x*y)]).reshape(x,y)) Max_road def Max_road(A,degree,start): import random imp

  • python 遗传算法求函数极值的实现代码

    废话不多说,大家直接看代码吧! """遗传算法实现求函数极大值-Zjh""" import numpy as np import random import matplotlib.pyplot as plt class Ga(): """求出二进制编码的长度""" def __init__(self): self.boundsbegin = -2 self.boundsend = 3 p

  • 详解用python实现简单的遗传算法

    今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下. 首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了).大致过程分为初始化编码.个体评价.选择,交叉,变异. 遗传算法介绍 遗传算法是通过模拟大自然中生物进化的历程,来解决问题的.大自然中一个种群经历过若干代的自然选择后,剩下的种群必定是适应环境的.把一个问题所有的解看做一个种群,经历过若干次的自然选择以后,剩下的解中是有问题的最优解的.当然,只

  • python 如何实现遗传算法

    1.基本概念 遗传算法(GA)是最早由美国Holland教授提出的一种基于自然界的"适者生存,优胜劣汰"基本法则的智能搜索算法.该法则很好地诠释了生物进化的自然选择过程.遗传算法也是借鉴该基本法则,通过基于种群的思想,将问题的解通过编码的方式转化为种群中的个体,并让这些个体不断地通过选择.交叉和变异算子模拟生物的进化过程,然后利用"优胜劣汰"法则选择种群中适应性较强的个体构成子种群,然后让子种群重复类似的进化过程,直到找到问题的最优解或者到达一定的进化(运算)时间.

  • python实现高效的遗传算法

    遗传算法属于一种优化算法. 如果你有一个待优化函数,可以考虑次算法.假设你有一个变量x,通过某个函数可以求出对应的y,那么你通过预设的x可求出y_pred,y_pred差距与你需要的y当然越接近越好,这就需要引入适应度(fitness)的概念.假设 fitness = 1/(1+ads(y_pred - y)),那么误差越小,适应度越大,即该个体越易于存活. 设计该算法的思路如下: (1)初始化种群,即在我需要的区间如[-100,100]内random一堆初始个体[x1,x2,x3...],这些

  • python遗传算法之单/多目标规划问题

    目录 1. 运行环境 2. 面向对象的原理 3. 带约束的单目标优化问题 3.1 继承 Problem 问题类完成对问题模型的描述 3.2 调用算法模板进行求解 3.3 结果 4. 带约束的多目标优化问题 4.1 继承 Problem 问题类完成对问题模型的描述 4.2 调用算法模板进行求解 4.3 结果 5. 参考资料 在上一篇博客中,我们学习了python遗传算法包geatpy.并用它展示了一个不带约束的单目标规划问题,对往期内容感兴趣的同学可以参考: 链接: python遗传算法之geat

  • python遗传算法之geatpy的深入理解

    目录 1. geatpy的安装 2. geatpy的基础数据结构 2.1 种群染色体 2.2 种群表现型 2.3 目标函数值 2.4 个体适应度 2.5 违反约束程度矩阵 2.6 译码矩阵 2.7 进化追踪器 3. geatpy的种群结构 3.1 Population类 3.2 PsyPopulation类 4. 求解标准测试函数——McCormick函数 5.参考文章 今天我们来学习python中的遗传算法的使用,我们这里使用的是geatpy的包进行学习,本博客主要从geatpy中的各种数据结

  • Python 自动化表单提交实例代码

    今天以一个表单的自动提交,来进一步学习selenium的用法 练习目标 0)运用selenium启动firefox并载入指定页面(这部分可查看本人文章 http://www.cnblogs.com/liu2008hz/p/6958126.html) 1)页面元素查找(多种查找方式:find_element_*) 2)内容填充(send_keys) 3)iframe与父页面切换(switch_to_frame是切换到iframe,switch_to_default_content是切换到主页面)

  • Python数据结构之单链表详解

    本文实例为大家分享了Python数据结构之单链表的具体代码,供大家参考,具体内容如下 # 节点类 class Node(): __slots__=['_item','_next'] # 限定Node实例的属性 def __init__(self,item): self._item = item self._next = None # Node的指针部分默认指向None def getItem(self): return self._item def getNext(self): return s

  • Python中的单继承与多继承实例分析

    本文实例讲述了Python中的单继承与多继承.分享给大家供大家参考,具体如下: 单继承 一.介绍 Python 同样支持类的继承,如果一种语言不支持继承,类就没有什么意义.派生类的定义如下所示: class DerivedClassName(BaseClassName1): <statement-1> . . . <statement-N> 需要注意圆括号中基类的顺序,若是基类中有相同的方法名,而在子类使用时未指定,python从左至右搜索 即方法在子类中未找到时,从左到右查找基类

  • Python中的单下划线和双下划线使用场景详解

    单下划线 单下划线用作变量 最常见的一种使用场景是作为变量占位符,使用场景明显可以减少代码中多余变量的使用.为了方便理解,_可以看作被丢弃的变量名称,这样做可以让阅读你代码的人知道,这是个不会被使用的变量,e.g.. for _, _, filenames in os.walk(targetDir): print(filenames) for _ in range(100): print('PythonPoint') 在交互解释器比如iPython中,_变量指向交互解释器中最后一次执行语句的返回

  • python 利用文件锁单例执行脚本的方法

    你可能会遇到这样的要求,一个脚本,只允许有一个实例. 在python中,为了实现这个需求,可以引入fcntl模块对文件加一个排他锁,这样一来,先启动的实例拥有了文件锁,而后启动的实例则因无法获取锁而退出 #coding=utf-8 import fcntl, sys, time, os pidfile = 0 def ApplicationInstance(): global pidfile pidfile = open(os.path.realpath(__file__), "r")

  • python如何实现单链表的反转

    这篇文章主要介绍了python如何实现单链表的反转,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 # coding=utf-8 class Node: def __init__(self, data=None, next=None): self.data = data self.next = next def Reserver(link): pre = link cur = link.next pre.next = None whil

  • python thrift 实现 单端口多服务的过程

    Thrift 是一种接口描述语言和二进制通信协议.以前也没接触过,最近有个项目需要建立自动化测试,这个项目之间的微服务都是通过 Thrift 进行通信的,然后写自动化脚本之前研究了一下. 需要定义一个xxx.thrift的文件, 来生成各种语言的代码,生成之后我们的服务提供者和消费者,都需要把代码引入,服务端把代码实现,消费者直接使用API的存根,直接调用. 和 http 相比,同属于应用层,走 tcp 协议.Thrift 优势在于发送同样的数据,request包 和 response包 要比

随机推荐