基于Python爬取搜狐证券股票过程解析

数据的爬取

我们以上证50的股票为例,首先需要找到一个网站包含这五十只股票的股票代码,例如这里我们使用搜狐证券提供的列表。

https://q.stock.sohu.com/cn/bk_4272.shtml

可以看到,在这个网站中有上证50的所有股票代码,我们希望爬取的就是这个包含股票代码的表,并获取这个表的第一列。

爬取网站的数据我们使用Beautiful Soup这个工具包,需要注意的是,一般只能爬取到静态网页中的信息。

简单来说,Beautiful Soup是Python的一个库,最主要的功能是从网页抓取数据。

像往常一样,使用这个库之前,我们需要先导入该库bs4。除此之外,我们还需要使用requests这个工具获取网站信息,因此导入这两个库:

import bs4 as bs

import requests

我们定义一个函数saveSS50Tickers() 来实现上证50股票代码的获取,获取的数据来自于搜狐证券的网页,使用 get() 方法获取给定静态网页的数据。

def saveSS50Tickers():
resp = requests.get('https://q.stock.sohu.com/cn/bk_4272.shtml')

接下来我们打开搜狐证券的这个网址,在页面任意位置右键选择查看元素,或者Inspect Element,或者类似的选项来查看当前网站的源代码信息。

我们需要先在这里找出网页的一些基本信息和我们需要爬取的数据的特征。

首先,找到Element,在下面的内容中找到网页的头文件 (head)。然后找到网页的文字的编码方式。这里这个网页文字的编码方式是gb2312。

如果我们想爬取并正确显示这个网页上,就需要先对获取到的网页内容解码。

解码可以使用 encoding 这个方法:

resp.encoding = 'gb2312'

接下来使用 BeautifulSoup 和lxml解析网页信息:

soup = bs.BeautifulSoup(resp.text, 'lxml')

这里为了方便后期的处理,首先使用 resp.text 将网页信息转成了文本格式,然后再解析网页的数据。

接下来我们需要在网页的源码中找到需要爬取信息的标签,这里我们需要爬取这个表格中的信息,首先,可以通过网站源码的搜索功能搜索表格里的相关数据定位到表格的源码。

同样以这个页面为例,一般网页使用HTML语言编译的,因为要准确定位,我们需要了解一些 HTML 语言的基础内容。在这个页面的源码中,

<table表示表格开始,后面是这个表格的一些属性。</table>表示表格结束。

首先,我们使用 soup.find 在网页信息中找到这个表格标签的入口:

table = soup.find('table', {'id': 'BIZ_MS_plstock'})

其中'table'表示这里需要找到一个表格,{'id':'BIZ_MS_plstock'} 则是通过内容或者属性实现表格的进一步定位。

找到表格的位置之后,我们需要继续查找需要的数据,同样以这个页面为例:

在网页开发语言中,

<tr表示表格中开始新的一行,<td表示在这一行中又新建了一列,而</td>则表示这一列结束了,对应的</tr>则表示这一行结束了。

通过该网页的源码,我们可以发现,

表格的第一行和第二行都是表头的信息,第三行开始是五十家公司的股票信息。另外每家公司的股票代码在表格的第一列位置。

因为,在Python中,我们需要从表格的第三行开始抓取,每行抓取表格的第一列的数据,将抓取到的数据转换成文本格式,我们用一个列表 tickers 来存储抓取到的数据:

tickers = []
for row in table.findAll('tr')[2:]:
ticker = row.findAll('td')[0].text
tickers.append(ticker + '.SS')

因此为了方便后续进行数据处理,这里我们存储上证50的每家公司的股票代码时,都在代码后面再添加'.SS'的字符。这时我们运行目前的代码,并将列表tickers输出:

# 导入 beautiful soup4 包,用于抓取网页信息
import bs4 as bs
# 导入 pickle 用于序列化对象
import pickle
# 导入 request 用于获取网站上的源码
import requests

def saveSS50Tickers():
  resp = requests.get('https://q.stock.sohu.com/cn/bk_4272.shtml')
  resp.encoding = 'gb2312'
  soup = bs.BeautifulSoup(resp.text, 'lxml')
  # print(soup)

  table = soup.find('table', {'id': 'BIZ_MS_plstock'})
  # print(table)
  tickers = []
  # print(table.find_all('tr'))
  for row in table.findAll('tr')[2:]:
    # print(row)
    ticker = row.findAll('td')[0].text
    tickers.append(ticker + '.SS')
  return tickers

tickers = saveSS50Tickers()
print(tickers)

观察到输出信息如下:

['600036.SS', '601229.SS', '600031.SS', '601166.SS', '600104.SS', '600030.SS', '603259.SS', '601668.SS', '601628.SS', '601766.SS', '601857.SS', '601398.SS', '601390.SS', '600029.SS', '600028.SS', '601818.SS', '601211.SS', '601066.SS', '601111.SS', '600837.SS', '600887.SS', '601888.SS', '600690.SS', '600519.SS', '600016.SS', '601989.SS', '601988.SS', '601601.SS', '600019.SS', '601186.SS', '600703.SS', '600196.SS', '601318.SS', '601800.SS', '600050.SS', '601319.SS', '601288.SS', '601688.SS', '603993.SS', '600309.SS', '600048.SS', '600276.SS', '601138.SS', '601336.SS', '601088.SS', '600585.SS', '600000.SS', '601328.SS', '601939.SS', '600340.SS']

这样我们就从搜狐证券这个网站上爬取到了上证50的公司股票代码,并将其以字符串的格式存放在了一个列表变量中。

将股票代码保存到本地

一般像股票代码这种内容,短时间内不会有很大的变动,所以我们也不需要每次使用时重新爬取,一种方便的做法是可以将股票代码信息以文件的格式保存到本地,需要使用时直接从本地读取就可以了。

这里我们将股票代码数据保存为pickle格式。pickle 格式的数据可以在 Python 中高效的存取,当然,将文件导出成该格式前需要先导入相应的pickle 库:

import pickle

pickle可以保存任何数据格式的数据,在经常存取的场景(保存和恢复状态)下读取更加高效。

把文件导出成pickle格式的方法是 pickle.dump,同时需要结合文件读写操作:

with open('SS50tickers.pickle', 'wb') as f: pickle.dump(tickers, f)

这里的'SS50tickers.pickle'就是保存的文件的名称,'wb'则表示向文件中写入数据。pickle.dump(tickers, f) 表示将列表tickers写入到文件中。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python爬虫过程解析之多线程获取小米应用商店数据

    本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理. 以下文章来源于IT共享之家 ,作者IT共享者 前言 小米应用商店给用户发现最好的安卓应用和游戏,安全可靠,可是要下载东西要一个一个地搜索太麻烦了.而且速度不是很快. 今天用多线程爬取小米应用商店的游戏模块.快速获取. 二.项目目标 目标 :应用分类 - 聊天社交 应用名称, 应用链接,显示在控制台供用户下载. 三.涉及的库和网站 1.网址:百度搜 - 小米应用商店,进入官网. 2.涉及的库:re

  • 详解python爬取弹幕与数据分析

    很不幸的是,由于疫情的关系,原本线下的AWD改成线上CTF了.这就很难受了,毕竟AWD还是要比CTF难一些的,与人斗现在变成了与主办方斗. 虽然无奈归无奈,但是现在还是得打起精神去面对下一场比赛.这个开始也是线下的,决赛地点在南京,后来是由于疫情的关系也成了线上. 当然,比赛内容还是一如既往的得现学,内容是关于大数据的. 由于我们学校之前并没有开设过相关培训,所以也只能自己琢磨了. 好了,废话先不多说了,正文开始. 一.比赛介绍 大数据总体来说分为三个过程. 第一个过程是搭建hadoop环境.

  • 基于Python爬取股票数据过程详解

    基本环境配置 python 3.6 pycharm requests csv time 相关模块pip安装即可 目标网页 分析网页 一切的一切都在图里 找到数据了,直接请求网页,解析数据,保存数据 请求网页 import requests url = 'https://xueqiu.com/service/v5/stock/screener/quote/list' response = requests.get(url=url, params=params, headers=headers, c

  • python cookie反爬处理的实现

    Cookies的处理 作用 保存客户端的相关状态 在爬虫中如果遇到了cookie的反爬如何处理? 手动处理     在抓包工具中捕获cookie,将其封装在headers中     应用场景:cookie没有有效时长且不是动态变化 自动处理  使用session机制  使用场景:动态变化的cookie  session对象:该对象和requests模块用法几乎一致.如果在请求的过程中产生了cookie,如果该请求使用session发起的,则cookie会被自动存储到session中. 案例 爬取

  • Python爬取股票信息,并可视化数据的示例

    前言 截止2019年年底我国股票投资者数量为15975.24万户, 如此多的股民热衷于炒股,首先抛开炒股技术不说, 那么多股票数据是不是非常难找, 找到之后是不是看着密密麻麻的数据是不是头都大了? 今天带大家爬取雪球平台的股票数据, 并且实现数据可视化 先看下效果图 基本环境配置 python 3.6 pycharm requests csv time 目标地址 https://xueqiu.com/hq 爬虫代码 请求网页 import requests url = 'https://xueq

  • python爬虫中PhantomJS加载页面的实例方法

    PhantomJS作为常用获取页面的工具之一,我们已经讲过页面测试.代码评估和捕获屏幕这几种使用的方式.当然最厉害的还是网页方面的捕捉,这里就不再讲述了.今天我们要讲的是它加载页面的新方法,这个可能很多人不知道.其实经常会用到,感兴趣的小伙伴一起进入今天的学习之中吧~ 可以利用 phantom 来实现页面的加载,下面的例子实现了页面的加载并将页面保存为一张图片. var page = require('webpage').create();page.open('http://cuiqingcai

  • 使用python爬虫实现网络股票信息爬取的demo

    实例如下所示: import requests from bs4 import BeautifulSoup import traceback import re def getHTMLText(url): try: r = requests.get(url) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: return "" def getStockList(lst, stockUR

  • python多线程+代理池爬取天天基金网、股票数据过程解析

    简介 提到爬虫,大部分人都会想到使用Scrapy工具,但是仅仅停留在会使用的阶段.为了增加对爬虫机制的理解,我们可以手动实现多线程的爬虫过程,同时,引入IP代理池进行基本的反爬操作. 本次使用天天基金网进行爬虫,该网站具有反爬机制,同时数量足够大,多线程效果较为明显. 技术路线 IP代理池 多线程 爬虫与反爬 编写思路 首先,开始分析天天基金网的一些数据.经过抓包分析,可知: ./fundcode_search.js包含所有基金的数据,同时,该地址具有反爬机制,多次访问将会失败的情况. 同时,经

  • 基于Python爬取搜狐证券股票过程解析

    数据的爬取 我们以上证50的股票为例,首先需要找到一个网站包含这五十只股票的股票代码,例如这里我们使用搜狐证券提供的列表. https://q.stock.sohu.com/cn/bk_4272.shtml 可以看到,在这个网站中有上证50的所有股票代码,我们希望爬取的就是这个包含股票代码的表,并获取这个表的第一列. 爬取网站的数据我们使用Beautiful Soup这个工具包,需要注意的是,一般只能爬取到静态网页中的信息. 简单来说,Beautiful Soup是Python的一个库,最主要的

  • 基于Python爬取爱奇艺资源过程解析

    像iqiyi这种视频网站,现在下载视频都需要下载相应的客户端.那么如何不用下载客户端,直接下载非vip视频? 选择你想要爬取的内容 该安装的程序以及运行环境都配置好 下面这段代码就是我在爱奇艺里搜素"英文名",然后出来的视频,共有20页,那么我们便从第一页开始,解析网页,然后分析 分析每一页网址,找出规律就可以直接得到所有页面 然后根据每一个视频的URL的标签,如'class' 'div' 'href'......通过bs4库进行爬取 而其他的信息则是直接循环所爬取到的URL,在每一个

  • 基于Python爬取fofa网页端数据过程解析

    FOFA-网络空间安全搜索引擎是网络空间资产检索系统(FOFA)是世界上数据覆盖更完整的IT设备搜索引擎,拥有全球联网IT设备更全的DNA信息.探索全球互联网的资产信息,进行资产及漏洞影响范围分析.应用分布统计.应用流行度态势感知等. 安装环境: pip install requests pip install lxml pip install fire 使用命令: python fofa.py -s=title="你的关键字" -o="结果输出文件" -c=&qu

  • python面向对象多线程爬虫爬取搜狐页面的实例代码

    首先我们需要几个包:requests, lxml, bs4, pymongo, redis 1. 创建爬虫对象,具有的几个行为:抓取页面,解析页面,抽取页面,储存页面 class Spider(object): def __init__(self): # 状态(是否工作) self.status = SpiderStatus.IDLE # 抓取页面 def fetch(self, current_url): pass # 解析页面 def parse(self, html_page): pass

  • 基于Python爬取51cto博客页面信息过程解析

    介绍 提到爬虫,互联网的朋友应该都不陌生,现在使用Python爬取网站数据是非常常见的手段,好多朋友都是爬取豆瓣信息为案例,我不想重复,就使用了爬取51cto博客网站信息为案例,这里以我的博客页面为教程,编写的Python代码! 实验环境 1.安装Python 3.7 2.安装requests, bs4模块 实验步骤 1.安装Python3.7环境 2.安装requests,bs4 模块 打开cmd,输入:pip install requests -i https://pypi.tuna.tsi

  • 如何基于Python爬取隐秘的角落评论

    "一起去爬山吧?" 这句台词火爆了整个朋友圈,没错,就是来自最近热门的<隐秘的角落>,豆瓣评分8.9分,好评不断. 感觉还是蛮不错的.同时,为了想更进一步了解一下小伙伴观剧的情况,永恒君抓取了爱奇艺平台评论数据并进行了分析.下面来做个分享,给大伙参考参考. 1.爬取评论数据 因为该剧是在爱奇艺平台独播的,自然数据源从这里取比较合适.永恒君爬取了<隐秘的角落>12集的从开播日6月16日-6月26日的评论数据. 使用 Chrome 查看源代码模式,在播放页面往下面滑

  • Python使用scrapy爬取阳光热线问政平台过程解析

    目的:爬取阳光热线问政平台问题反映每个帖子里面的标题.内容.编号和帖子url CrawlSpider版流程如下: 创建爬虫项目dongguang scrapy startproject dongguang 设置items.py文件 # -*- coding: utf-8 -*- import scrapy class NewdongguanItem(scrapy.Item): # define the fields for your item here like: # name = scrapy

  • Python爬取数据并实现可视化代码解析

    这次主要是爬了京东上一双鞋的相关评论:将数据保存到excel中并可视化展示相应的信息 主要的python代码如下: 文件1 #将excel中的数据进行读取分析 import openpyxl import matplotlib.pyplot as pit #数据统计用的 wk=openpyxl.load_workbook('销售数据.xlsx') sheet=wk.active #获取活动表 #获取最大行数和最大列数 rows=sheet.max_row cols=sheet.max_colum

  • Python使用mongodb保存爬取豆瓣电影的数据过程解析

    创建爬虫项目douban scrapy startproject douban 设置items.py文件,存储要保存的数据类型和字段名称 # -*- coding: utf-8 -*- import scrapy class DoubanItem(scrapy.Item): title = scrapy.Field() # 内容 content = scrapy.Field() # 评分 rating_num = scrapy.Field() # 简介 quote = scrapy.Field(

随机推荐