python实现图像,视频人脸识别(opencv版)

图片人脸识别

import cv2

filepath = "img/xingye-1.png"
img = cv2.imread(filepath) # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色

# OpenCV人脸识别分类器
classifier = cv2.CascadeClassifier(
  "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
color = (0, 255, 0) # 定义绘制颜色
# 调用识别人脸
faceRects = classifier.detectMultiScale(
  gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects): # 大于0则检测到人脸
  for faceRect in faceRects: # 单独框出每一张人脸
    x, y, w, h = faceRect
    # 框出人脸
    cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
    # 左眼
    cv2.circle(img, (x + w // 4, y + h // 4 + 30), min(w // 8, h // 8),
          color)
    #右眼
    cv2.circle(img, (x + 3 * w // 4, y + h // 4 + 30), min(w // 8, h // 8),
          color)
    #嘴巴
    cv2.rectangle(img, (x + 3 * w // 8, y + 3 * h // 4),
           (x + 5 * w // 8, y + 7 * h // 8), color)

cv2.imshow("image", img) # 显示图像
c = cv2.waitKey(10)

cv2.waitKey(0)
cv2.destroyAllWindows()

视频人脸识别

# -*- coding:utf-8 -*-
# OpenCV版本的视频检测
import cv2

# 图片识别方法封装
def discern(img):
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  cap = cv2.CascadeClassifier(
    "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
  )
  faceRects = cap.detectMultiScale(
    gray, scaleFactor=1.2, minNeighbors=3, minSize=(50, 50))
  if len(faceRects):
    for faceRect in faceRects:
      x, y, w, h = faceRect
      cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2) # 框出人脸
  cv2.imshow("Image", img)

# 获取摄像头0表示第一个摄像头
cap = cv2.VideoCapture(0)
while (1): # 逐帧显示
  ret, img = cap.read()
  # cv2.imshow("Image", img)
  discern(img)
  if cv2.waitKey(1) & 0xFF == ord('q'):
    break
cap.release() # 释放摄像头
cv2.destroyAllWindows() # 释放窗口资源

以上就是python实现图像,视频人脸识别(opencv版)的详细内容,更多关于python 人脸识别的资料请关注我们其它相关文章!

(0)

相关推荐

  • python dlib人脸识别代码实例

    本文实例为大家分享了python dlib人脸识别的具体代码,供大家参考,具体内容如下 import matplotlib.pyplot as plt import dlib import numpy as np import glob import re #正脸检测器 detector=dlib.get_frontal_face_detector() #脸部关键形态检测器 sp=dlib.shape_predictor(r"D:\LB\JAVASCRIPT\shape_predictor_68

  • Python人脸识别第三方库face_recognition接口说明文档

    1. 查找图像中出现的人脸 代码示例: #导入face_recognition模块 import face_recognition #将jpg文件加载到numpy数组中 image = face_recognition.load_image_file("your_file.jpg") #查找图片中人脸(上下左右)的位置,图像中可能有多个人脸 #face_locations的值类似[(135,536,198,474),()] Face_locations = face_recogniti

  • Python3 利用face_recognition实现人脸识别的方法

    前言 之前实践了下face++在线人脸识别版本,这回做一下离线版本.github 上面有关于face_recognition的相关资料,本人只是做个搬运工,对其中的一些内容进行搬运,对其中一些例子进行实现. 官方描述: face_recognition是一个强大.简单.易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,特别是兼容树莓派系统.本项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工具提取.识别.操作人脸.本项目的人脸识别是基于业内领先的C++开源库 dlib中

  • 用Python识别人脸,人种等各种信息

    最近几天了解了一下人脸识别,应用场景可以是图片标注,商品图和广告图中有没有模特,有几个模特,模特的性别,年龄,颜值,表情等数据的挖掘. 基础的识别用dlib来实现,dlib是一个机器学习的包,主要用C++写的,但是也有Python版本.其中最流行的一个功能是Facial Landmark Detection, 配备已经训练好的轮廓预测模型,叫shape_predictor_68_face_landmarks.dat, 从名字就可以看出,它可以检测出面部的68个关键点,包括五官和外轮廓等. 安装d

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • face++与python实现人脸识别签到(考勤)功能

    项目实现利用face++开发一个课堂签到的软件,实现面向摄像头即可完成记录学号.姓名和时间的签到工作. 项目架构 项目使用场景 代码: 流程代码,主文件 #!usr/bin/ # -*- coding: utf-8 -*- import requests from json import JSONDecoder import csv import cv2 import time import tkinter as tk search_url = "https://api-cn.faceplusp

  • Python学习笔记之视频人脸检测识别实例教程

    前言 上一篇博文与大家分享了简单的图片人脸识别技术,其实在实际应用中,很多是通过视频流的方式进行识别,比如人脸识别通道门禁考勤系统.人脸动态跟踪识别系统等等. 下面话不多说了,来一起看看详细的介绍吧 案例 这里我们还是使用 opencv 中自带了 haar人脸特征分类器,通过读取一段视频来识别其中的人脸. 代码实现: # -*- coding: utf-8 -*- __author__ = "小柒" __blog__ = "https://blog.52itstyle.vip

  • 如何通过python实现人脸识别验证

    这篇文章主要介绍了如何通过python实现人脸识别验证,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 直接上代码,此案例是根据https://github.com/caibojian/face_login修改的,识别率不怎么好,有时挡了半个脸还是成功的 # -*- coding: utf-8 -*- # __author__="maple" """ ┏┓ ┏┓ ┏┛┻━━━┛┻┓ ┃ ☃ ┃ ┃ ┳┛ ┗

  • Python基于Dlib的人脸识别系统的实现

    之前已经介绍过人脸识别的基础概念,以及基于opencv的实现方式,今天,我们使用dlib来提取128维的人脸嵌入,并使用k临近值方法来实现人脸识别. 人脸识别系统的实现流程与之前是一样的,只是这里我们借助了dlib和face_recognition这两个库来实现.face_recognition是对dlib库的包装,使对dlib的使用更方便.所以首先要安装这2个库. pip3 install dlib pip3 install face_recognition 然后,还要安装imutils库 p

  • python3人脸识别的两种方法

    本文实例为大家分享了python3实现人脸识别的具体代码,供大家参考,具体内容如下 第一种: import cv2 import numpy as np filename = 'test1.jpg' path = r'D:\face' def detect(filename): face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') face_cascade.load(path + '\haarcas

  • python3.8动态人脸识别的实现示例

    一.准备依赖库 pip install dlib pip python-opencv 二.代码实现  #coding: utf-8 """ 从视屏中识别人脸,并实时标出面部特征点 """ import dlib #人脸识别的库dlib import cv2 #图像处理的库OpenCv # 使用特征提取器get_frontal_face_detector detector = dlib.get_frontal_face_detector() # 读

  • 简单的Python人脸识别系统

    案例一 导入图片 思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口 # 1.导入库 import cv2 # 2.加载图片 img = cv2.imread('a.png') # 3.创建窗口 cv2.namedWindow('window 1 haha') # 4.显示图片 cv2.imshow('window 1',img) # 5.暂停窗口 cv2.waitKey(0) # 6.关闭窗口 cv2.destroyAllWindows() 案例二 在图片

  • python调用百度API实现人脸识别

    1.代码 from aip import AipFace import cv2 import time import base64 from PIL import Image from io import BytesIO import pyttsx3 # """ 你的 APPID AK SK """ APP_ID = '1965####' API_KEY = 'YXL65ekIloykyjrT4kzc####' SECRET_KEY = 'lFi

随机推荐