Python OpenCV 图像平移的实现示例

每次学习新东西的时候,橡皮擦都是去海量检索,然后找到适合自己理解的部分。

再将其拼凑成一个小的系统,争取对该内容有初步理解。

今天这 1 个小时,核心要学习的是图像的平移,在电脑上随便打开一张图片,实现移动都非常简单,但是在代码中,出现了一些新的概念。

检索 OpenCV 图像平移相关资料时,碰到的第一个新概念是就是 仿射变换

每次看到这样子的数学名字,必然心中一凉,做为一个数学小白,又要瑟瑟发抖了。

百度一下,看看百科中是如何介绍的。

看过上图中的一些相关简介之后,对于这个概念也并没有太深刻的理解,本着先用起来,在补充理论的学习观点,我们先实现图像平移。

学习过程中,碰到一些概念性的东西,可以先应用起来,然后在后续的深入学习过程中,逐步去完善它们。

cv2.warpAffine() 仿射变换

基于该方法去寻找相关资料,得到仿射变换的基本概念,从二维坐标到二维坐标之间的线性变换,并且要保持二维图形的“平直性” 和 “平行性”。

仿射变换中,包含平移,缩放,翻转,旋转,剪切。

该方法的语法结构如下:

dst = cv2.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]])

参数说明:

  • src:输入图像
  • M:2*3 transformation matrix (转变矩阵)
  • dsize:输出图像的大小,格式为(cols,rows),width 对应 cols,height 对应 rows
  • flags: 可选参数,插值方法的组合(int 类型),默认值 INTER_LINEAR
  • borderMode:可选参数,边界像素模式(int 类型),默认值 BORDER_CONSTANT
  • borderValue:可选参数,边界填充值; 默认情况下,默认值 Scalar()即 0

官方可查阅的英文资料如下:

插值方式(flags)有如下类型:

  • INTER_LINEAR 线性插值
  • INTER_NEAREST 最近邻插值
  • INTER_AREA 区域插值
  • INTER_CUBIC 三次样条插值
  • INTER_LANCZOS4 Lanczos 插值

一般情况下,使用 wrapAffine 前三个参数,即 warpAffine(img,M,(rows,cols)) 实现基本的仿射变换效果,但是这种情况会出现 黑边 现象。

最后一个参数为 borderValue,边界填充的颜色,默认为黑色,可以自行设置为其它颜色。

具体代码

图像平移是图像位置的移动。在平移前,需要先转换矩阵 M,,其中 txty 表示在(x,y)方向上的位移,如下所示:

测试代码如下,重要部分在注释中进行说明。

import numpy as np
import cv2 as cv

img = cv.imread('10.jpg', 1)
rows, cols, channels = img.shape
# [1,0,100] 右移 100, [0,1,50] 下移 50
M = np.float32([[1, 0, 100], [0, 1, 50]])
res = cv.warpAffine(img, M, (cols, rows))
cv.imshow("img", res)
cv.waitKey()

特别说明:
cv.warpAffine 方法的第三个参数是输出图像的大小,其形式应为(width,height)。记住 width =列数(cols),height =行数(rows)。

以下为代码运行结果。

关于 borderMode 参数值的说明:

该部分内容涉及边缘处理,翻阅手册过程找到的说明指向 BorderTypes。翻阅了一下,依旧是有些超纲,可以先记录下相关内容,日后在进行回顾,参考地址

所有值罗列如下:

  • BORDER_CONSTANT = 0
  • BORDER_REPLICATE = 1
  • BORDER_REFLECT = 2
  • BORDER_WRAP = 3
  • BORDER_REFLECT_101 = 4
  • BORDER_TRANSPARENT = 5
  • BORDER_REFLECT101 = BORDER_REFLECT_101
  • BORDER_DEFAULT = BORDER_REFLECT_101
  • BORDER_ISOLATED = 16

borderValue:当图像边界处理方式为 BORDER_CONSTANT 时的填充值。

测试代码如下:

import numpy as np
import cv2 as cv

img = cv.imread('10.jpg', 1)
rows, cols, channels = img.shape
M = np.float32([[1, 0, 100], [0, 1, 50]])
res = cv.warpAffine(img, M, (cols, rows),
                    borderMode=cv.BORDER_CONSTANT, borderValue=(200, 66, 66))
cv.imshow("img", res)
cv.waitKey()

OpenCV 尾声

到此这篇关于Python OpenCV 图像平移的实现示例的文章就介绍到这了,更多相关OpenCV 图像平移内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • opencvs实现图像平移效果

    本文实例为大家分享了opencvs实现图像平移效果的具体代码,供大家参考,具体内容如下 图像平移: 按照指定方向和距离,移动到相应位置 格式:cv.warpAffine(img,M,dsize) 参数: 实现代码: import numpy as np import cv2 as cv import matplotlib.pyplot as plt # 中文显示配置 plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签 plt.rcPar

  • Python3+OpenCV2实现图像的几何变换(平移、镜像、缩放、旋转、仿射)

    前言 总结一下最近看的关于opencv图像几何变换的一些笔记. 这是原图: 1.平移 import cv2 import numpy as np img = cv2.imread("image0.jpg", 1) imgInfo = img.shape height = imgInfo[0] width = imgInfo[1] mode = imgInfo[2] dst = np.zeros(imgInfo, np.uint8) for i in range( height ): f

  • Python OpenCV 图像平移的实现示例

    每次学习新东西的时候,橡皮擦都是去海量检索,然后找到适合自己理解的部分. 再将其拼凑成一个小的系统,争取对该内容有初步理解. 今天这 1 个小时,核心要学习的是图像的平移,在电脑上随便打开一张图片,实现移动都非常简单,但是在代码中,出现了一些新的概念. 检索 OpenCV 图像平移相关资料时,碰到的第一个新概念是就是 仿射变换. 每次看到这样子的数学名字,必然心中一凉,做为一个数学小白,又要瑟瑟发抖了. 百度一下,看看百科中是如何介绍的. 看过上图中的一些相关简介之后,对于这个概念也并没有太深刻

  • Python OpenCV图像颜色变换示例

    目录 给图像添加颜色 图像按位操作 图像的通道操作 给图像添加颜色 在使用OpenCV操作图像时,有时候需要给图像添加不同的颜色,以达到不同的风格效果.这里介绍的主要是opencv中的cv.applyColorMap()函数. 给图像应用颜色函数cv.applyColorMap(src, colormap, dst=None)src:表示传入的原图:colormap:颜色图类型(17种).可以单独使用,也可以以一个列表的形式批量使用. 以下图举例实现: 直接上代码: # -*-coding:ut

  • python opencv图像的高通滤波和低通滤波的示例代码

    目录 前言 完整代码 低通滤波 高通滤波 结果展示 低通滤波 高通滤波 前言 上一章我们说明了如何将图像机娘傅里叶变换,将图像由时域变换成频域,并将低频移动至图像中心.那么将低频移动中心后,就可以将图像的低频和高频分开,从而进行低通滤波和高通滤波的处理. 完整代码 低通滤波 import cv2 import numpy as np import matplotlib.pyplot as plt # cv2.imread()在读取图像的时候,默认的是读取成RGB图像,cv2.IMREAD_GRA

  • python opencv 图像尺寸变换方法

    利用Python OpenCV中的 cv.Resize(源,目标,变换方法)就可以实现变换为想要的尺寸了 源文件:就不用说了 目标:你可以对图像进行倍数的放大和缩小 也可以直接的输入尺寸大小 变换的方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值

  • Python实现图像的垂直投影示例

    Python + OpenCV 直接上代码 import cv2 import numpy as np from matplotlib import pyplot as plt from PIL import Image img=cv2.imread('0002.jpg') #读取图片,装换为可运算的数组 GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #将BGR图转为灰度图 ret,thresh1=cv2.threshold(GrayImage,1

  • python opencv 图像边框(填充)添加及图像混合的实现方法(末尾实现类似幻灯片渐变的效果)

    图像边框的实现 图像边框设计的主要函数 cv.copyMakeBorder()--实现边框填充 主要参数如下: 参数一:源图像--如:读取的img 参数二--参数五分别是:上下左右边的宽度--单位:像素 参数六:边框类型: cv.BORDER_CONSTANT--cv.BORDER_REPLICATE--cv.BORDER_REFLECT--cv.BORDER_WRAP--cv.BORDER_REFLECT_101--cv.BORDER_TRANSPARENT--cv.BORDER_REFLEC

  • python opencv肤色检测的实现示例

    1 椭圆肤色检测模型 原理:将RGB图像转换到YCRCB空间,肤色像素点会聚集到一个椭圆区域.先定义一个椭圆模型,然后将每个RGB像素点转换到YCRCB空间比对是否再椭圆区域,是的话判断为皮肤. YCRCB颜色空间 椭圆模型 代码 def ellipse_detect(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR)

  • Python+Opencv实现数字识别的示例代码

    一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

  • Python+OpenCV实现角度测量的示例代码

    本文介绍如何使用python语言实现角度测量,程序包括鼠标选点.直线斜率计算.角度计算三个子程序和一个主程序.最终实现效果:在图片上用鼠标确认三点,程序将会显示由此三点确定的角度,如下图所示. 1.鼠标选点 # -*- coding: utf-8 -*- import cv2 path = "picture_mqa\\angle_measure.bmp" img = cv2.imread(path) pointsList = [] def mousePoints(event,x,y,f

  • opencv 图像轮廓的实现示例

    图像轮廓 Contours:轮廓 轮廓是将没有连着一起的边缘连着一起. 边缘检测检测出边缘,边缘有些未连接在一起. 注意问题 1.对象为二值图像,首先进行阈值分割或者边缘检测. 2.查找轮廓需要更改原始图像,通常使用原始图像的一份进行拷贝. 3.在opencv里,是从黑色背景里找白色.因此对象必须是白色,背景为黑色. 方法 cv2.findContours() cv2.drawContours() 通过cv2.findContours() 查找轮廓在哪里,再通过 cv2.drawContours

随机推荐