Android基于OpenCV实现霍夫直线检测

目录
  • 霍夫直线检测
    • 点和线的对偶性
    • 极坐标参数方程
  • API
  • 操作
  • 效果

霍夫直线检测

点和线的对偶性

  • 图像空间中的点,对应霍夫空间中的直线
  • 图像空间中的直线,对应霍夫空间中的点
  • 共点的直线,在霍夫空间中对应的点在一条直线上
  • 共线的点,在霍夫空间中对应的直线交于一点

极坐标参数方程

对于平面中的一条直线,在笛卡尔坐标中,常见的有点斜式,两点式两种表示方法。然而在霍夫变换中,考虑的是另外一种表示方式:使用(r, theta)来表示一条直线。其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角。如下图所示:

根据霍夫变换原理,利用极坐标形式表示直线时,在图像空间中经过某一点的所有直线映射到参数空间中是一个正弦曲线。图像空间中直线上的两个点在参数空间中映射的两条正弦曲线相交于一点。

通过上述的变换过程,将图像中的直线检测转换成了在参数空间中寻找某个点 通过的正线曲线最多的问题。由于在参数空间内的曲线是连续的,而在实际情况中图像的像素是离散的,因此我们需要将参数空间的坐标轴进行离散化,用离散后的方格表示每一条正弦曲线。首先寻找符合条件的网格,之后寻找该网格对应的图像空间中所有的点,这些点共同组成了原图像中的直线。

由此可见,霍夫变换算法检测图像中的直线主要分为4个步骤

  • 将参数空间的坐标轴离散化,例如theta=0,10,20……, r=0.1,0.2,0.3……
  • 将图像中每个非0像素通过映射关系求取在参数空间通过的方格。
  • 统计参数空间内每个方格出现的次数,选取次数大于某一阈值的方格作为表示直线的方格。
  • 将参数空间中表示直线的方格的参数作为图像中直线的参数。

霍夫检测具有抗干扰能力强,对图像中直线的残缺部分、噪声以及其它共存的非直线结构不敏感,能容忍特征边界描述中的间隙,并且相对不受图像噪声影响等优点,但是霍夫变换的时间复杂度和空间复杂度都很高,并且检测精度受参数离散间隔制约。离散间隔较大时会降低检测精度,离散间隔较小时虽然能提高精度,但是会增加计算负担,导致计算时间边长

API

public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta)
  • 参数一:image,待检测直线的原图像,必须是CV_8U的单通道图像.
  • 参数二:lines,霍夫变换检测到的直线输出量,每一条直线都由两个或者三个参数表示。第一个表示直线距离坐标原点的距离 ,第二个表示坐标原点到直线的垂线与x轴的夹角,若有第三个,则表示累加器的数值。

  • 参数三:rho,距离分辨率,以像素为单位,距离离散化时的单位长度
  • 参数四:theta,角度分辨率,以弧度为单位,夹角离散化时的单位角度。
  • 参数五:threshold,累加器的阈值,即参数空间中离散化后每个方格被通过的累计次数大于该阈值时将被识别为直线,否则不被识别为直线。
  • 参数六:srn,对于多尺度霍夫变换算法中,该参数表示距离分辨率的除数,粗略的累加器距离分辨率是第三个参数rho,精确的累加器分辨率是rho/srn。这个参数必须是非负数,默认参数为0。
  • 参数七:stn,对于多尺度霍夫变换算法中,该参数表示角度分辨率的除数,粗略的累加器距离分辨率是第四个参数rho,精确的累加器分辨率是rho/stn。这个参数必须是非负数,默认参数为0。当这个参数与第六个参数srn同时为0时,此函数表示的是标准霍夫变换。
  • 参数八:min_theta,检测直线的最小角度,默认参数为0。
  • 参数九:max_theta,检测直线的最大角度,默认参数为CV_PI,是OpenCV 4中的默认数值具体为3.1415926535897932384626433832795。

使用标准霍夫变换和多尺度霍夫变换函数HoughLins()提取直线时无法准确知道图像中直线或者线段的长度,只能得到图像中是否存在符合要求的直线以及直线的极坐标解析式。如果需要准确的定位图像中线段的位置,HoughLins()函数便无法满足需求。但是OpenCV 4提供的渐进概率式霍夫变换函数HoughLinesP()可以得到图像中满足条件的直线或者线段两个端点的坐标,进而确定直线或者线段的位置。

public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold, double minLineLength, double maxLineGap)

参数一:image,待检测直线的原图像,必须是CV_8U的单通道图像.

参数二:lines,输出线段。每条线由4元素表示。如下,分别代表每个线段的两个端点

  • 参数三:rho,距离分辨率,以像素为单位,距离离散化时的单位长度
  • 参数四:theta,角度分辨率,以弧度为单位,夹角离散化时的单位角度。
  • 参数五:threshold,累加器的阈值,即参数空间中离散化后每个方格被通过的累计次数大于该阈值时将被识别为直线,否则不被识别为直线。该累积数越大,则得到的直线可能就越长。
  • 参数六:minLineLength,表示可以检测的最小线段长度,根据实际需要进行设置。
  • 参数七:maxLineGap,表示线段之间的最大间隔像素,假设5表示小于5个像素的两个相邻线段可以连接起来。

操作

package cn.onlyloveyd.demo.ui

import android.os.Bundle
import androidx.appcompat.app.AppCompatActivity
import androidx.databinding.DataBindingUtil
import cn.onlyloveyd.demo.R
import cn.onlyloveyd.demo.databinding.ActivityHoughLineBinding
import cn.onlyloveyd.demo.ext.showMat
import org.opencv.android.Utils
import org.opencv.core.Mat
import org.opencv.core.Point
import org.opencv.core.Scalar
import org.opencv.imgproc.Imgproc
import kotlin.math.cos
import kotlin.math.roundToInt
import kotlin.math.sin

/**
 * 霍夫直线检测
 * author: yidong
 * 2020/7/18
 */
class HoughLineDetectActivity : AppCompatActivity() {

    private lateinit var mBinding: ActivityHoughLineBinding
    private lateinit var mGray: Mat
    private lateinit var mEdge: Mat
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        mBinding = DataBindingUtil.setContentView(this, R.layout.activity_hough_line)
        mBinding.presenter = this
        mGray = Mat()
        mEdge = Mat()
        val bgr = Utils.loadResource(this, R.drawable.book)
        Imgproc.cvtColor(bgr, mGray, Imgproc.COLOR_BGR2GRAY)
        mBinding.ivLena.showMat(mGray)
        Imgproc.Canny(mGray, mEdge, 80.0, 150.0, 3, false)
    }

    override fun onDestroy() {
        mGray.release()
        mEdge.release()
        super.onDestroy()
    }

    fun doHoughLineDetect() {
        title = "HoughLine"
        val lines = Mat()
        Imgproc.HoughLines(mEdge, lines, 1.0, Math.PI / 180.0, 150)
        val out = Mat.zeros(mGray.size(), mGray.type())
        val data = FloatArray(2)
        for (i in 0 until lines.rows()) {
            lines.get(i, 0, data)
            val rho = data[0] // 直线距离坐标原点的距离
            val theta = data[1] // 直线过坐标原点垂线与x轴夹角
            val a = cos(theta.toDouble())  //夹角的余弦值
            val b = sin(theta.toDouble())  //夹角的正弦值
            val x0 = a * rho  //直线与过坐标原点的垂线的交点
            val y0 = b * rho
            val pt1 = Point()
            val pt2 = Point()
            pt1.x = (x0 + 1000 * (-b)).roundToInt().toDouble()
            pt1.y = (y0 + 1000 * (a)).roundToInt().toDouble()
            pt2.x = (x0 - 1000 * (-b)).roundToInt().toDouble()
            pt2.y = (y0 - 1000 * (a)).roundToInt().toDouble()
            Imgproc.line(out, pt1, pt2, Scalar(255.0, 255.0, 255.0), 2, Imgproc.LINE_AA, 0)
        }
        mBinding.ivResult.showMat(out)
        out.release()
        lines.release()
    }

    fun doHoughLinePDetect() {
        title = "HoughLineP"
        val lines = Mat()
        Imgproc.HoughLinesP(mEdge, lines, 1.0, Math.PI / 180.0, 100, 50.0, 10.0)
        val out = Mat.zeros(mGray.size(), mGray.type())
        for (i in 0 until lines.rows()) {
            val data = IntArray(4)
            lines.get(i, 0, data)
            val pt1 = Point(data[0].toDouble(), data[1].toDouble())
            val pt2 = Point(data[2].toDouble(), data[3].toDouble())
            Imgproc.line(out, pt1, pt2, Scalar(255.0, 255.0, 255.0), 2, Imgproc.LINE_AA, 0)
        }
        mBinding.ivResult.showMat(out)
        out.release()
        lines.release()
    }
}

效果

以上就是Android基于OpenCV实现霍夫直线检测的详细内容,更多关于Android OpenCV实现霍夫直线检测的资料请关注我们其它相关文章!

(0)

相关推荐

  • Android+OpenCV4.2.0环境配置详解(Android studio)

    仅是个人记录,希望能对有需要的给予一些小小的帮助 首先我们肯定是要去到OpenCV的官网下载对应的SDK,并解压得到文件夹(opencv-4.2.0-android-sdk) 其次是NDK环境搭建(双击shift,输入sdk,找到sdk manager,将下面红色框框勾选安装) 创建项目,我选用的是(并不是只有这一选择) 导入Module File->New->Import Module 路径选择**\opencv-4.2.0-android-sdk\OpenCV-android-sdk\sd

  • Android基于OpenCV实现图像金字塔

    目录 图像金字塔 高斯金字塔 拉普拉斯金字塔 API 下采样 上采样 操作 操作 效果 源码 图像金字塔 图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构. 图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合.其通过梯次向下采样获得,直到达到某个终止条件才停止采样. 金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似. 我们将一层一层的图像比喻成金字塔

  • Android基于opencv实现多通道分离与合并

    目录 多通道分离 API 操作 通道合并 API 操作 结果 源码 多通道分离 API public static void split(Mat m, List<Mat> mv) 参数一:m,待分离的多通道图像 参数二:mv,分离后的单通道图像 操作 override fun onCreate(savedInstanceState: Bundle?) { super.onCreate(savedInstanceState) mBinding = DataBindingUtil.setConte

  • Android+OpenCv4实现边缘检测及轮廓绘制出图像最大边缘

    实现步骤: 图像灰度化 边缘检测 根据Canny检测得出来的Mat寻找轮廓 算出最大轮廓周长or面积 根据获取到的最大轮廓下标进行轮廓绘制 画出最大矩形,并返回Rect Canny边缘检测 基于Canny算法的边缘检测主要有5个步骤,依次是高斯滤波.像素梯度计算.非极大值像素梯度抑制.滞后阈值处理和孤立弱边缘抑制.Canny在有噪声的情况下表现好不好,取决于前面的降噪过程,可以手动做高斯处理提高识别率. /** image 输入图像,必须是CV_8U的单通道或者三通道图像. edges 输出图像

  • 使用Android Studio创建OpenCV4.1.0 项目的步骤

    一.OpenCV  OpenCV(开源计算机视觉库)是一个开源的计算机视觉和机器学习软件库,是一个基于C与C++的跨平台计算机视觉处理库. 二.下载 开发基于Andorid的计算机视觉的应用可以使用OpenCV 4.1.0-Android SDK: 从官方网站下载 OpenCV 4.1.0 For Android SDK https://sourceforge.net/projects/opencvlibrary/files/4.1.0/opencv-4.1.0-android-sdk.zip/

  • Android OpenCv4 绘制多边形的方法

    集成非常简单,直接按Module形式导入 sdk 即可 官方地址,打开选择Android 下载完成解压以后直接导入OpenCV-android-sdk目录下的sdk文件即可. 绘制矩形 方法 /** img 输入图像 pt1 左上起点 pt2 右下终点 color 绘制直线的颜色 thickness 直线宽度.若为负值,表示填充 lineType 边界的类型,可取值为FILLED ,LINE_4 ,LINE_8 和LINE_AA shift 点坐标中的小数位数 **/ public static

  • OpenCV在Android上的应用示例

    一. OpenCV 介绍 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. 在移动端上使用 OpenCV 可以完成一系列图像处理的工作. 二. OpenCV 在 Android 上的配置 我在项目中使用的 OpenCV 版本是 4.x.

  • 如何在Android上使用opencv

    1.下载OpenCV的Android包并解压缩(https://opencv.org/releases/) 2.创建Android应用或者在现有应用中,导入OpenCV模块 导入目录时选择Opencv Android中的sdk / java目录 3.修改导入的Opencv模块的build.gradle,使compileSdkVersion.buildToolsVersion.minSdkVersion.targetSdkVersion与app的build.gradle中的一致. 4.修改导入Op

  • Android基于OpenCV实现图像修复

    目录 API 操作 图像修复 实际应用中,图像常常容易受损,如存在污渍的镜头.旧照片的划痕.人为的涂画(比如马赛克),亦或是图像本身的损坏.将受到损坏的图像尽可能还原成原来的模样的技术,称之为图像修复.所谓修复,就代表图像大部分内容是完好的,所以,图像修复的原理,就是用完好的部分去推断受损部分的信息,特别是完好部分与受损部分的交界处,即受损区域的边缘,在这个推断过程中尤为重要. OpenCV给我们提供了inpaint方法来实现这个功能,并提供了两种图像修复的算法: 基于Navier-Stokes

  • Android Studio4.0导入OpenCv4.3.0的方法步骤

    1.准备环境 Android Studio4.0:官网下载:https://developer.android.google.cn/studio/ (Android Studio安装之前首先需要确认电脑上是否安装好JAVA环境,具体安装可以参考其他大佬,本文不作为重点) OpenCv4.3.0:官网下载:https://opencv.org/ 百度网盘:链接: https://pan.baidu.com/s/1aC2E_LT8yFkyAKgZhcNPbg 提取码: 7bk1 2.新建工程 双击打

  • Android基于OpenCV实现QR二维码检测

    目录 QR二维码 QR二维码格式 QR二维码结构 API QRCodeDetector类结构 检测QR二维码 识别QR二维码 检测并识别QR二维码 操作 结果 源码 QR二维码 QR码(英语:Quick Response Code:全称为快速响应矩阵图码)是二维码的一种,于1994年由日本DENSO WAVE公司发明.QR来自英文Quick Response的缩写,即快速反应,因为发明者希望QR码可以快速解码其内容.QR码使用四种标准化编码模式(数字.字母数字.字节(二进制)和日文(Shift_

  • Android基于OpenCV实现非真实渲染

    目录 非真实渲染 API 边缘保留滤波 细节增强 素描铅笔画 风格化 操作 效果 非真实渲染 非真实感渲染(Non Photorealistic Rendering,简称NPR),是指利用计算机模拟各种视觉艺术的绘制风格,也用于发展新的绘制风格.比如模拟中国画.水彩.素描.油画.版画等艺术风格.NPR也可以把三维场景渲染出丰富的.特别的新视觉效果,使它具备创新的功能.NPR渲染以强烈的艺术形式应用在动画.游戏等娱乐领域中,也出现在工程.工业设计图纸中.广阔的应用领域,不仅是由于它的艺术表现形式丰

随机推荐