python3 使用Opencv打开USB摄像头,配置1080P分辨率的操作

我就废话不多说了,直接上代码吧!

import cv2
import time

cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)

cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter.fourcc('M', 'J', 'P', 'G'))

while True:
    ret, frame = cap.read()

    cv2.imshow("test", frame)

    print(time.time())
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

以上这篇python3 使用Opencv打开USB摄像头,配置1080P分辨率的操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python3.5.3下配置opencv3.2.0的操作方法

    1.安装numpy 进入python安装目录的lib下的site-packages文件夹下打开cmd输入pip install numpy下载numpy NumPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)).据说NumPy将Python相当于变成一种免费的更强大的MatLab系统. 2.下载opencv 下载地址:http://w

  • python opencv设置摄像头分辨率以及各个参数的方法

    1,为了获取视频,你应该创建一个 VideoCapture 对象.他的参数可以是设备的索引号,或者是一个视频文件.设备索引号就是在指定要使用的摄像头.一般的笔记本电脑都有内置摄像头.所以参数就是 0.你可以通过设置成 1 或者其他的来选择别的摄像头.之后,你就可以一帧一帧的捕获视频了.但是最后,别忘了停止捕获视频.使用 ls /dev/video*命令可以查看摄像头设备 2,cap.read() 返回一个布尔值(True/False).如果帧读取的是正确的,就是 True.所以最后你可以通过检查

  • 基于python3 OpenCV3实现静态图片人脸识别

    本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联. 首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行

  • python使用opencv在Windows下调用摄像头实现解析

    这篇文章主要介绍了python使用opencv在Windows下调用摄像头实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 环境准备 1.我这里使用的是python3.7.4 2.使用pip安装numpy与opencv-python模块 安装成功后会提升succeed,这里我已安装所以提示已存在.需要注意的是opencv-python目前只有python3.7的支持版本不支持最新的python3.8. 可在阿里云的镜像仓库内查看openc

  • python3 使用Opencv打开USB摄像头,配置1080P分辨率的操作

    我就废话不多说了,直接上代码吧! import cv2 import time cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080) cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter.fourcc('M', 'J', 'P', 'G')) while True:     ret, frame = c

  • Linux下利用Opencv打开笔记本摄像头问题

    新建test文件夹,文件夹存在test.cpp和CMakeLists.txttest.cpp#include <iostream> #include <string> #include <sstream> #include <opencv2/core.hpp> #include <opencv2/highgui.hpp> #include <opencv2/videoio.hpp> using namespace cv; using

  • OpenCV外接USB摄像头的方法

    近期,需要利用OpenCV计算机视觉库读取视频并显示.保存.由于之前一直使用笔记本,此次台式机外接USB摄像头,出现了很大问题,总是显示内存问题,谷歌.百度大半天,总结各路大神建议,最终解决了问题,将问题和代码分享给大家,避免走弯路. 出现问题原因: 1. 摄像头初始化需要时间,进入循环前 waitKey(2000),否则会出现闪退:         2. 摄像头视频存在解码问题. //--------------------------------------[程序说明]-----------

  • 树莓派用python中的OpenCV输出USB摄像头画面

    本文实例为大家分享了python OpenCV来表示USB摄像头画面的具体代码,供大家参考,具体内容如下 确认Python版本 $ python Python 2.7.13 (default, Jan 19 2019, 14:48:08) [GCC 6.3.0 20170124] on linux2 Type "help", "copyright", "credits" or "license" for more inform

  • 使用opencv-python如何打开USB或者笔记本前置摄像头

    目录 opencv-python打开USB或笔记本前置摄像头 代码 效果 Opencv-python摄像头录制视屏,拍照 Opencv-python摄像头录制视屏并保存 拍照 opencv-python打开USB或笔记本前置摄像头 代码 其中video_index是摄像头编号,一般前置摄像头为0,USB摄像头为1或2. import cv2 def catch_video(name='my_video', video_index=0): # cv2.namedWindow(name) cap =

  • python+opencv打开摄像头,保存视频、拍照功能的实现方法

    以下代码是保存视频 # coding:utf-8 import cv2 import sys reload(sys) sys.setdefaultencoding('utf8') cap = cv2.VideoCapture(0) cap.set(3,640) cap.set(4,480) cap.set(1, 10.0) #此处fourcc的在MAC上有效,如果视频保存为空,那么可以改一下这个参数试试, 也可以是-1 fourcc = cv2.cv.CV_FOURCC('m', 'p', '4

  • 基于Opencv实现双目摄像头拍照程序

    本文实例为大家分享了Opencv实现双目摄像头拍照程序的具体代码,供大家参考,具体内容如下 我用的双目摄像头是一根usb线接入电脑.运行环境是vc2015,opencv3.0.将左右两个摄像头拍到的图片分别保存起来. 贴出代码(C++) #include"stdafx.h" #include<iostream> #include<string> #include<sstream> #include<opencv2/core.hpp> #i

  • 树莓派使用USB摄像头和motion实现监控

    本文实例为大家分享了树莓派使用USB摄像头和motion实现监控的具体代码,供大家参考,具体内容如下 一.工具 1.树莓派3B 2.USB摄像头 二.操作步骤 1.安装motion sudo apt-get install motion 2.配置motion (1) sudo nano /etc/default/motion 将里面的no修改成yes,让motion可以一直在后台运行:start_motion_daemon=yes (2) sudo nano /etc/motion/motion

  • Android Studio中使用jni进行opencv开发的环境配置方法

    使用jni进行opencv开发可以快速地将PC端的opencv代码移植到手机上,但是如何在android studio下进行配置,网上几乎找不到教程,大多都是eclipse下使用mk文件的方法,找不到使用gradle的方案,摸了几天,总算是摸清楚了. 其实找对了方法,用android studio配置环境要比eclipse简单很多,首先是预先准备的环境: 1.Android studio,官网最新版,我用的是2.3.1: 2.OpenCV4Android,官网最新版,我用的3.2.0: 就这两个

  • yolov5调用usb摄像头及本地摄像头的方法实例

    目录 yolov5调用usb摄像头 YOLOv5调用本地摄像头 总结 yolov5 调用 usb 摄像头 文章是在yolov5 v5.0版本的detect.py所修改编写 其他v1.0-v4.0没有试过,你们可以试试. 具体用法已经写在代码里面了. import time import cv2 import numpy as np import torch from models.experimental import attempt_load from utils.datasets impor

随机推荐