python基于opencv检测程序运行效率
这篇文章主要介绍了python基于opencv检测程序运行效率,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
涉及到的函数主要有两个:
1.cv2.getTickCount()函数返回从参考点到这个函数被执行的时钟数。所以当你在一个函数前后都调用它的话,你就会得到这个函数的执行时间(时钟数)。
2.cv2.getTickFrequency()返回时钟频率,或者说每秒钟的时钟数。
所以你可以按照以下的方式得到一个函数运行了多少秒:
# -*- coding: utf-8 -*- import cv2 import numpy as np e1 = cv2.getTickCount() #你运行的代码 e2 = cv2.getTickCount() time = (e2 - e1)/ cv2.getTickFrequency()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
Python+OpenCV+图片旋转并用原底色填充新四角的例子
我就废话不多说了,直接上代码吧! import cv2 from math import fabs, sin, cos, radians import numpy as np from scipy.stats import mode def get_img_rot_broa(img, degree=45, filled_color=-1): """ Desciption: Get img rotated a certain degree, and use some color
-
Python+opencv+pyaudio实现带声音屏幕录制
基于个人的爱好和现实的需求,决定用Python做一个屏幕录制的脚本.因为要看一些加密的视频,每次都要登录,特别麻烦,遂决定用自己写的脚本,将加密视频的播放过程全程录制下来,这样以后看自己的录播就好了.结合近期自己学习的内容,正好用Python来练练手,巩固自己的学习效果. 经过多番搜索,决定采用Python+opencv+pyaudio来实现屏幕录制.网上搜索到的录屏,基本都是不带声音的,而我要实现的是带声音的屏幕录制.下面就开始一步一步的实现吧. 声音录制 import pyaudio imp
-
opencv-python 提取sift特征并匹配的实例
我就废话不多说,直接上代码吧! # -*- coding: utf-8 -*- import cv2 import numpy as np from find_obj import filter_matches,explore_match from matplotlib import pyplot as plt def getSift(): ''' 得到并查看sift特征 ''' img_path1 = '../../data/home.jpg' #读取图像 img = cv2.imread(i
-
opencv3/Python 稠密光流calcOpticalFlowFarneback详解
光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式.光流方法计算在t和 t+Δtt+Δt时刻拍摄的两个图像帧之间的每个像素的运动位置.这些方法被称为差分,因为它们基于图像信号的局部泰勒级数近似; 也就是说,它们使用关于空间和时间坐标的偏导数. 和稀疏光流相比,稠密光流不仅仅是选取图像中的某些特征点(一般用角点)进行计算;而是对图像进行逐点匹配,计算所有点的偏移量,得到光流场,从而进行配准.因此其计算量会显著大于稀疏光流,但效果一般优于稀疏光流. 函数: def calcOpti
-
opencv-python 读取图像并转换颜色空间实例
我就废话不多说了,直接上代码吧! #-*- encoding:utf-8 -*- ''' python 绘制颜色直方图 ''' import cv2 import numpy as np from matplotlib import pyplot as plt def readImage(): #读取图片 B,G,R,返回一个ndarray类型 #cv2.IMREAD_COLOR # 以彩色模式读入 1 #cv2.IMREAD_GRAYSCALE # 以灰色模式读入 0 img = cv2.im
-
Python+OpenCV 实现图片无损旋转90°且无黑边
0. 引言 有如上一张图片,在以往的图像旋转处理中,往往得到如图所示的图片. 然而,在进行一些其他图像处理或者图像展示时,黑边带来了一些不便.本文解决图片旋转后出现黑边的问题,实现了图片尺寸不变的旋转(以上提到的黑边是图片的一部分). 1. 方法流程 (1)旋转图片,得到有黑边的旋转图片. (2)找出图片区域(不含黑边)的位置. (3)创建一个空图片(其实是矩阵). (4)将图片区域搬到此空图片. 2. 程序 #!/usr/bin/python # -*- coding: UTF-8 -*- "
-
python3 使用Opencv打开USB摄像头,配置1080P分辨率的操作
我就废话不多说了,直接上代码吧! import cv2 import time cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080) cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter.fourcc('M', 'J', 'P', 'G')) while True: ret, frame = c
-
使用python-opencv读取视频,计算视频总帧数及FPS的实现
如下所示: 1.计算总帧数 import os import cv2 video_cap = cv2.VideoCapture('ffmpeg_test.avi') frame_count = 0 all_frames = [] while(True): ret, frame = video_cap.read() if ret is False: break all_frames.append(frame) frame_count = frame_count + 1 # The value be
-
python基于opencv检测程序运行效率
这篇文章主要介绍了python基于opencv检测程序运行效率,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 涉及到的函数主要有两个: 1.cv2.getTickCount()函数返回从参考点到这个函数被执行的时钟数.所以当你在一个函数前后都调用它的话,你就会得到这个函数的执行时间(时钟数). 2.cv2.getTickFrequency()返回时钟频率,或者说每秒钟的时钟数. 所以你可以按照以下的方式得到一个函数运行了多少秒: # -*- c
-
python基于Opencv实现人脸口罩检测
一.开发环境 python 3.6.6 opencv-python 4.5.1 二.设计要求 1.使用opencv-python对人脸口罩进行检测 三.设计原理 设计流程图如图3-1所示, 图3-1 口罩检测流程图 首先进行图片的读取,使用opencv的haar鼻子特征分类器,如果检测到鼻子,则证明没有戴口罩.如果检测到鼻子,接着使用opencv的haar眼睛特征分类器,如果没有检测到眼睛,则结束.如果检测到眼睛,则把RGB颜色空间转为HSV颜色空间.进行口罩区域的检测.口罩区域检测流程是首先把
-
Python基于OpenCV实现人脸检测并保存
本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下 安装opencv 如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块) 详情可以点击此处 导入opencv import cv2 所有包都包含haarcascade文件.这
-
python 基于opencv 实现一个鼠标绘图小程序
需求 在画布上用鼠标画图,可以画圆或矩形,按m键在两种模式下切换.左键按下时开始画图,移动到哪儿画到哪儿,左键释放时结束画图. 实现思想 用鼠标画图:需要定义鼠标的回调函数mouse_event 画圆或矩形:需要定义一个画图的模式mode 左键单击.移动.释放:需要捕获三个不同的事件 开始画图,结束画图:需要定义一个画图的标记位drawing 实现代码 import cv2 as cv import numpy as np drawing = False # 是否开始画图 mode = True
-
Python基于OpenCV库Adaboost实现人脸识别功能详解
本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num
-
python基于OpenCV模板匹配识别图片中的数字
前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh
-
Python基于opencv的图像压缩算法实例分析
本文实例讲述了Python基于opencv的图像压缩算法.分享给大家供大家参考,具体如下: 插值方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值. 函数 cvResize 将图像 src 改变尺寸得到与 dst 同样大小.若设定 ROI,函数将按
-
python基于opencv实现人脸识别
将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别. 识别图像中的人脸 #coding:utf-8 import cv2 as cv # 读取原始图像 img = cv.imread('face.png') # 调用熟悉的人脸分类器 识别特征类型 # 人脸 - haarcascade_frontalface_default.xml # 人眼 - haarcascade_eye.xml # 微笑 - haarcascad
-
python 基于opencv去除图片阴影
一.前言 如果你自己打印过东西,应该有过这种经历.如果用自己拍的图片,在手机上看感觉还是清晰可见,但是一打印出来就是漆黑一片.比如下面这两张图片: 因为左边的图片有大片阴影,所以打印出来的图片不堪入目(因为打印要3毛钱,所以第二张图片只是我用程序模拟的效果). 那有什么办法可以解决吗?答案是肯定的,今天我们就来探讨几个去除阴影的方法. 二.如何去除阴影? 首先为了方便处理,我们通常会对图片进行灰度转换(即将图片转换成只有一个图层的灰色图像). 然后我们分析一下,在上面的图片中有三个主色调,分别是
-
Python基于opencv实现的人脸识别(适合初学者)
目录 一点背景知识 一.人脸识别步骤 二.直接上代码 (1)录入人脸.py (2)数据训练.py (3)进行识别.py 三.运行过程及结果 1.获取人脸照片于目标文件中 2.进行数据训练,获得trainer.yml文件中的数据 3.进行识别 总结 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有
随机推荐
- 使用POST方式弹出窗口的两种方法示例介绍
- lua中操作json数据的方法
- jquery实现下拉菜单的二级联动利用json对象从DB取值显示联动
- 详解Vue 方法与事件处理器
- Windows Server 2003 虚拟主机的安全配置
- Linux下connect超时处理(总结)
- 浅谈java 字符串,字符数组,list间的转化
- iOS开发中UIPopoverController的使用详解
- 高效的.Net UDP异步编程实现分析
- JavaSript中变量的作用域闭包的深入理解
- Android登陆界面用户名检测功能
- mysql索引学习教程
- Yii 2.0中场景的使用教程
- pushState实现Ajax无刷新页面切换
- 关于JSP中文问题的解决方法
- C#判断指定驱动器是否是Fat分区格式的方法
- 通过命令行方式批量设置保留IP地址的代码
- C++学习小结之数据类型及转换方式
- Symfony生成二维码的方法
- 总结Android App内存优化之图片优化