Java内存模型可见性问题相关解析

这篇文章主要介绍了Java内存模型可见性问题相关解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

前言

之前的文章中讲到,JMM是内存模型规范在Java语言中的体现。JMM保证了在多核CPU多线程编程环境下,对共享变量读写的原子性、可见性和有序性。

本文就具体来讲讲JMM是如何保证共享变量访问的可见性的。

什么是可见性问题

我们从一段简单的代码来看看到底什么是可见性问题。

public class VolatileDemo {

  boolean started = false;

  public void startSystem(){
    System.out.println(Thread.currentThread().getName()+" begin to start system, time:"+System.currentTimeMillis());
    started = true;
    System.out.println(Thread.currentThread().getName()+" success to start system, time:"+System.currentTimeMillis());
  }

  public void checkStartes(){
    if (started){
      System.out.println("system is running, time:"+System.currentTimeMillis());
    }else {
      System.out.println("system is not running, time:"+System.currentTimeMillis());
    }
  }

  public static void main(String[] args) {
    VolatileDemo demo = new VolatileDemo();
    Thread startThread = new Thread(new Runnable() {
      @Override
      public void run() {
        demo.startSystem();
      }
    });
    startThread.setName("start-Thread");

    Thread checkThread = new Thread(new Runnable() {
      @Override
      public void run() {
        while (true){
          demo.checkStartes();
        }
      }
    });
    checkThread.setName("check-Thread");
    startThread.start();
    checkThread.start();
  }

}

上面的列子中,一个线程来改变started的状态,另外一个线程不停地来检测started的状态,如果是true就输出系统启动,如果是false就输出系统未启动。那么当start-Thread线程将状态改成true后,check-Thread线程在执行时是否能立即“看到”这个变化呢?答案是不一定能立即看到。这边我做了很多测试,大多数情况下是能“感知”到started这个变量的变化的。但是偶尔会存在感知不到的情况。请看下下面日志记录:

start-Thread begin to start system, time:1577079553515
start-Thread success to start system, time:1577079553516
system is not running, time:1577079553516  ==>此处start-Thread线程已经将状态设置成true,但是check-Thread线程还是没检测到
system is running, time:1577079553516
system is running, time:1577079553516
system is running, time:1577079553516
system is running, time:1577079553516
system is running, time:1577079553516
system is running, time:1577079553516
system is running, time:1577079553517
system is running, time:1577079553517
system is running, time:1577079553517
system is running, time:1577079553517
system is running, time:1577079553517
system is running, time:1577079553517
system is running, time:1577079553517
system is running, time:1577079553519
system is running, time:1577079553519
system is running, time:1577079553519
system is running, time:1577079553519
system is running, time:1577079553519
system is running, time:1577079553519
system is running, time:1577079553519
system is running, time:1577079553519
system is running, time:1577079553519

上面的现象可能会让人比较困惑,为什么有时候check-Thread线程能感知到状态的变化,有时候又感知不到变化呢?这个现象就是在多核CPU多线程编程环境下会出现的可见性问题。

Java内存模型规定了所有的变量都存储在主内存中,每条线程还有自己的工作内存,线程在工作内存中保存的值是主内存中值的副本,线程对变量的所有操作都必须在工作内存中进行,而不能直接读写主内存。等到线程对变量操作完毕之后会将变量的最新值刷新回到主内存。

但是何时刷新这个最新值又是随机的。所以就有可能一个线程已经将一个共享变量更新了,但是还没刷新回主内存,那么这时其他对这个变量进行读写的线程就看不到这个最新值。这个就是多CPU多线程编程环境下的可见性问题。也是上面代码会出现问题的原因。

JMM对可见性问题的保证

在多CPU多线程编程环境下,对共享变量的读写会出现可见性问题。但是幸好JMM提供了相应的技术手段来帮我们规避这些问题,可以让程序正确运行。JMM针对可见性问题,主要提供了如下手段:

  • volatile关键字
  • synchronized关键字
  • Lock锁
  • CAS操作(原子操作类)

volatile关键字

使用volatile关键字修饰一个变量可以保证变量的可见性。所以对于上面的代码,我们只需要简单的修改下代码就可以让程序正确运行了。

private volatile boolean started = false;

使用volatile修饰一个共享变量可以达到如下的效果:

一旦线程对这个共享变量的副本做了修改,会立马刷新最新值到主内存中去;

一旦线程对这个共享变量的副本做了修改,其他线程中对这个共享变量拷贝的副本值会失效,其他线程如果需要对这个共享变量进行读写,必须重新从主内存中加载。

那么volatile具体是怎么达到上面两个效果的呢?其实volatile底层使用的是内存屏障来保证可见性的。

内存屏障(英语:Memory barrier),也称内存栅栏,内存栅障,屏障指令等,是一类同步屏障指令,是CPU或编译器在对内存随机访问的操作中的一个同步点,使得此点之前的所有读写操作都执行后才可以开始执行此点之后的操作。大多数现代计算机为了提高性能而采取乱序执行,这使得内存屏障成为必须。

语义上,内存屏障之前的所有写操作都要写入内存;内存屏障之后的读操作都可以获得同步屏障之前的写操作的结果。因此,对于敏感的程序块,写操作之后、读操作之前可以插入内存屏障。

对内存屏障做下简单的总结:

  • 内存屏障是一个指令级别的同步点;
  • 内存屏障之前的写操作都必须立马刷新回主内存;
  • 内存屏障之后的读操作都必须从主内存中读取最新值;
  • 在有内存屏障的地方,会禁止指令重排序,即屏障下面的代码不能跟屏障上面的代码交换执行顺序,即在执行到内存屏障这句指令时,在它前面的操作已经全部完成。

synchronized关键字

使用synchronized代码块或者synchronized方法也可以保证共享变量的可见性。只要如下修改上面的代码,我们就能得到正确的执行结果。

public synchronized void startSystem(){
  System.out.println(Thread.currentThread().getName()+" begin to start system, time:"+System.currentTimeMillis());
  value = 2;
  started = true;
  System.out.println(Thread.currentThread().getName()+" success to start system, time:"+System.currentTimeMillis());
}

public synchronized void checkStartes(){
  if (started){
    System.out.println("system is running, time:"+System.currentTimeMillis());
  }else {
    System.out.println("system is not running, time:"+System.currentTimeMillis());
  }
}

当线程释放锁时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存中。当线程获取锁时,JMM会把该线程对应的本地内存置为无效。从而使得被监视器保护的临界区代码必须从主内存中读取共享变量。我们发现锁具有和volatile一致的内存语义,所以使用synchronized也可以实现共享变量的可见性。

Lock接口

使用Lock相关的实现类也可以保证共享变量的可见性。其实现原理和synchronized的实现原理类似,这边也就不再赘述了。

CAS机制(Atomic类)

使用原子操作类也可以保证共享变量操作的可见性。所以我们只要如下修稿上面的代码就行了。

private AtomicBoolean started = new AtomicBoolean(false);

原子操作类底层使用的是CAS机制。Java中CAS机制每次都会从主内存中获取最新值进行compare,比较一致之后才会将新值set到主内存中去。而且这个整个操作是一个原子操作。所以CAS操作每次拿到的都是主内存中的最新值,每次set的值也会立即写到主内存中。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 浅析Java内存模型与垃圾回收

    1.Java内存模型 Java虚拟机在执行程序时把它管理的内存分为若干数据区域,这些数据区域分布情况如下图所示: 程序计数器:一块较小内存区域,指向当前所执行的字节码.如果线程正在执行一个Java方法,这个计数器记录正在执行的虚拟机字节码指令的地址,如果执行的是Native方法,这个计算器值为空. Java虚拟机栈:线程私有的,其生命周期和线程一致,每个方法执行时都会创建一个栈帧用于存储局部变量表.操作数栈.动态链接.方法出口等信息. 本地方法栈:与虚拟机栈功能类似,只不过虚拟机栈为虚拟机执行J

  • 了解Java多线程的可见性与有序性

    多线程的可见性 一个线程对共享变量值的修改,能够及时的被其他线程看到. 共享变量 如果一个变量在多个线程的工作内存中都存在副本,那么这个变量就是这几个线程的共享变量. Java内存模型 JMM(Java Memory Model,简称JMM)描述了Java程序中各种变量(线程共享变量)的访问规则,以及在JVM中将变量存储到内存和从内存中读取出变量这样的底层细节.它遵循四个原则: 所有的变量都存储在主内存中 每个线程都有自己独立的工作内存,里面保存该线程使用到的变量的副本(主内存中该变量的一份拷贝

  • Java 高并发三:Java内存模型和线程安全详解

    网上很多资料在描述Java内存模型的时候,都会介绍有一个主存,然后每个工作线程有自己的工作内存.数据在主存中会有一份,在工作内存中也有一份.工作内存和主存之间会有各种原子操作去进行同步. 下图来源于这篇Blog 但是由于Java版本的不断演变,内存模型也进行了改变.本文只讲述Java内存模型的一些特性,无论是新的内存模型还是旧的内存模型,在明白了这些特性以后,看起来也会更加清晰. 1. 原子性 原子性是指一个操作是不可中断的.即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其它线程干扰

  • Java内存模型JMM详解

    Java Memory Model简称JMM, 是一系列的Java虚拟机平台对开发者提供的多线程环境下的内存可见性.是否可以重排序等问题的无关具体平台的统一的保证.(可能在术语上与Java运行时内存分布有歧义,后者指堆.方法区.线程栈等内存区域). 并发编程有多种风格,除了CSP(通信顺序进程).Actor等模型外,大家最熟悉的应该是基于线程和锁的共享内存模型了.在多线程编程中,需要注意三类并发问题: ·原子性 ·可见性 ·重排序 原子性涉及到,一个线程执行一个复合操作的时候,其他线程是否能够看

  • 学习Java内存模型JMM心得

    有时候编译器.处理器的优化会导致runtime与我们设想的不一样,为此Java对编译器和处理器做了一些限制,JAVA内存模型(JMM)将这些抽象出来,这样编写代码时就无需考虑那么多底层细节,并保证"只要遵循JMM的规则编写程序,其运行结果一定是正确的". JMM的抽象结构 在Java中,所有的实例.静态变量存储在堆内存中,堆内存是可以在线程间共享的,这部分也称为共享变量.而局部变量.方法定义参数.异常处理参数是在栈中的,栈内存不在线程间共享. 而由于编译器.处理器的优化,会导致共享变量

  • 在Java内存模型中测试并发程序代码

    让我们来看看这段代码: import java.util.BitSet; import java.util.concurrent.CountDownLatch; public class AnExample { public static void main(String[] args) throws Exception { BitSet bs = new BitSet(); CountDownLatch latch = new CountDownLatch(1); Thread t1 = ne

  • Java并发编程-volatile可见性详解

    前言 要学习好Java的多线程,就一定得对volatile关键字的作用机制了熟于胸.最近博主看了大量关于volatile的相关博客,对其有了一点初步的理解和认识,下面通过自己的话叙述整理一遍. 有什么用? volatile主要对所修饰的变量提供两个功能 可见性 防止指令重排序 <br>本篇博客主要对volatile可见性进行探讨,以后发表关于指令重排序的博文. 什么是可见性? 把JAVA内存模型(JMM)展示得很详细了,简单概括一下 1.每个Thread有一个属于自己的工作内存(可以理解为每个

  • Java内存模型中的虚拟机栈原理分析

    Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域,这些区域都会有各自的用途,以及创建和销毁的时间,有的区域会随着虚拟机进程的启动而存在,有些区域则依赖用户线程的启动和结束而建立和销毁.Java虚拟机所管理的内存将会包括以下几个运行时数据区域.如下图所示(图片来自<深入理解Java虚拟机>一书). 在内存中,栈分为两部分,一部分是本地方法栈,为虚拟机使用到的Native方法服务,具体的虚拟机可以自由实现,另一部分就是虚拟机栈,主要是为虚拟机执行Java方法服务

  • java synchronized实现可见性过程解析

    JMM关于synchronized的两条规定: 1)线程解锁前,必须把共享变量的最新值刷新到主内存中 2)线程加锁时,将清空工作内存中共享变量的值,从而使用共享变量时需要从主内存中重新获取最新的值 (注意:加锁与解锁需要是同一把锁) 通过以上两点,可以看到synchronized能够实现可见性.同时,由于synchronized具有同步锁,所以它也具有原子性 多线程中程序交错执行时,重排序可能会造成内存可见性问题 接下来我们看一段代码: /** * synchronized能够实现原子性(同步)

  • Java内存模型可见性问题相关解析

    这篇文章主要介绍了Java内存模型可见性问题相关解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 前言 之前的文章中讲到,JMM是内存模型规范在Java语言中的体现.JMM保证了在多核CPU多线程编程环境下,对共享变量读写的原子性.可见性和有序性. 本文就具体来讲讲JMM是如何保证共享变量访问的可见性的. 什么是可见性问题 我们从一段简单的代码来看看到底什么是可见性问题. public class VolatileDemo { boolean

  • Java内存模型之重排序的相关知识总结

    一.数据依赖性 如果两个操作访问同一个变量,而且这两个操作中有一个操作为写操作,此时这两个操作之间存在数据依赖性.数据依赖性分为三种,如表所示: 名称 代码示例 说明 写后读 a=1;b=a; 写一个变量后,再读这个位置 写后写 a=1;a=2; 写一个变量后,在写这个变量 读后写 a=b;b=1; 读一个变量后,再写这个变量 上面的这三种情况,只要重排序了两个操作的执行顺序,程序的执行结果就会被改变.编译器和处理器针对单个处理器中执行的指令序列和单个线程中执行的操作重排序时,会遵守数据依赖性,

  • Java内存模型相关知识总结

    [1]CPU和缓存的一致性 我们应该都知道,计算机在执行程序的时候,每条指令都是在CPU中执行的,而执行的时候,又免不了要和数据打交道.而计算机上面的数据,是存放在主存当中的,也就是计算机的物理内存啦. ​ 刚开始,还相安无事的,但是随着CPU技术的发展,CPU的执行速度越来越快.而由于内存的技术并没有太大的变化,所以从内存中读取和写入数据的过程和CPU的执行速度比起来差距就会越来越大,这就导致CPU每次操作内存都要耗费很多等待时间. ​ 所以,人们想出来了一个好的办法,就是在CPU和内存之间增

  • Java内存模型原子性原理及实例解析

    这篇文章主要介绍了Java内存模型原子性原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 本文就具体来讲讲JMM是如何保证共享变量访问的原子性的. 原子性问题 原子性是指:一个或多个操作,要么全部执行且在执行过程中不被任何因素打断,要么全部不执行. 下面就是一段会出现原子性问题的代码: public class AtomicProblem { private static Logger logger = LoggerFactory.

  • Java内存模型知识汇总

    为什么要有内存模型 在介绍Java内存模型之前,先来看一下到底什么是计算机内存模型,然后再来看Java内存模型在计算机内存模型的基础上做了哪些事情.要说计算机的内存模型,就要说一下一段古老的历史,看一下为什么要有内存模型. 内存模型,英文名Memory Model,他是一个很老的老古董了.他是与计算机硬件有关的一个概念.那么我先给你介绍下他和硬件到底有啥关系. CPU和缓存一致性 我们应该都知道,计算机在执行程序的时候,每条指令都是在CPU中执行的,而执行的时候,又免不了要和数据打交道.而计算机

  • Java内存模型知识详解

    1. 概述 多任务和高并发是衡量一台计算机处理器的能力重要指标之一.一般衡量一个服务器性能的高低好坏,使用每秒事务处理数(Transactions Per Second,TPS)这个指标比较能说明问题,它代表着一秒内服务器平均能响应的请求数,而TPS值与程序的并发能力有着非常密切的关系.在讨论Java内存模型和线程之前,先简单介绍一下硬件的效率与一致性. 2.硬件的效率与一致性 由于计算机的存储设备与处理器的运算能力之间有几个数量级的差距,所以现代计算机系统都不得不加入一层读写速度尽可能接近处理

  • Java内存模型之happens-before概念详解

    简介 happens-before是JMM的核心概念.理解happens-before是了解JMM的关键. 1.设计意图 JMM的设计需要考虑两个方面,分别是程序员角度和编译器.处理器角度: 程序员角度,希望内存模型易于理解.易于编程.希望是一个强内存模型. 编译器和处理器角度,希望减少对它们的束缚,以至于编译器和处理器可以做更多的性能优化.希望是一个弱内存模型. ​因此JSR-133专家组设计JMM的核心目标就两个: 为程序员提供足够强的内存模型对编译器和处理器的限制尽可能少 ​下面通过一段代

  • 详细分析Java内存模型

    目录 一.为什么要学习并发编程 二.为什么需要并发编程 三.从物理机中得到启发 四.Java 内存模型 五.原子性 5.1.什么是原子性 5.2.如何保证原子性 六.可见性 6.1.什么是可见性 6.2.如何保证可见性 七.有序性 7.1.什么是有序性 7.2.如何保证有序性 一.为什么要学习并发编程 对于 "我们为什么要学习并发编程?" 这个问题,就好比 "我们为什么要学习政治?" 一样,我们(至少作为学生党是这样)平常很少接触到,然后背了一堆 "正确且

随机推荐