tensorflow之tf.record实现存浮点数数组
因为最近打算转战Tensorflow,我将自己的脑部肿瘤分割课题从caffe转移到tensorflow上去
然后我将数据存到Tf.record里面去,出现来不收敛,以及精度上不去的等现象。
最终原因是:数据 存入tf.record,我转为二进制也就是使用来tobytes()函数,再将数据存入tf.record,浮点数以二进制存入会有精度丢失问题。
其实:当发现这个精度上不去的现象之后,我第一反应就是是不是精度丢失,然后上网跟别人交流,告诉我不可能是精度丢失,不信让我输出来看,结果我输出来看后,发现数值确实没有变化,所以就放弃来这个精度丢失的方向,转而去找别的方向,结果几经周折,无果之后,再来尝试这个,发现,确实是转为二进制导致来精度丢失(确实浪费来我很多精力,甚至一度想放弃)。
经验教训:跟别人交流,一定要保持理性,可以尝试别人的方法,但是不能丢掉自己的想法,因为没有人比你自己更了解你的项目。
下面来讲讲,如何将浮点数组存进tf.record:简单记录,不懂可以评论:
import tensorflow as tf import numpy as np def _floats_feature(value): #这里的value=后面没有括号 #千万不要写成return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) return tf.train.Feature(float_list=tf.train.FloatList(value=value)) # data you would like to save, dtype=float32 #这里我生成了一个浮点数数组,来假定作为我的数据 data = np.random.randn(shape=(5, 5)) #这里一定要铺平,不然存不进去 data = data.flatten() # open tfrecord file writer = tf.python_io.TFRecordWriter(train_data_path) # make train example example = tf.train.Example(features=tf.train.Features( feature={'data': _floats_feature(data)})) # write on the file writer.write(example.SerializeToString())
这就是存数据了,下一步读取数据,一定要注意将原来铺平的数据reshape为原来的形状。
# open tfrecorder reader reader = tf.TFRecordReader() # read file _, serialized_example = reader.read(filename_queue) # read data features = tf.parse_single_example(serialized_example, features={'data': tf.VarLenFeature(tf.float32)}) # make it dense tensor data = tf.sparse_tensor_to_dense(features['data'], default_value=0) # reshape data = tf.reshape(data, [5,5]) return tf.train.batch(data, batch_size, num_threads, capacity)
以上这篇tensorflow之tf.record实现存浮点数数组就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
赞 (0)