如何用OpenCV -python3实现视频物体追踪

opencv

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。该库也有大量的Python、Java and MATLAB/OCTAVE(版本2.5)的接口。这些语言的API接口函数可以通过在线文档获得。如今也提供对于C#、Ch、Ruby,GO的支持。

所有新的开发和算法都是用C++接口。一个使用CUDA的GPU接口也于2010年9月开始实现。

import numpy as np
import cv2
cap =cv2.VideoCapture(0)
while(1):
  #获取每一帧
  ret,frame = cap.read()
  #RGB转换到HSV
  hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
  #设定蓝色的阈值。确定要追踪的颜色为蓝色。
  lower_blue = np.array([100,50,50])
  upper_blue = np.array([120,255,255])
  #根据阈值构建掩模,构建黑白图
  #hsv:原图
  #lower_blue:图像中低于这个lower_blue的值,图像值变为0,即黑色
  #upper_blue:图像中高于这个upper_blue的值,图像值变为0
  #而在lower_blue~upper_blue之间的值变成255,即白色。
  mask = cv2.inRange(hsv,lower_blue,upper_blue)
  #对原图像和掩模进行位运算
  #蓝色覆盖白色区域,黑色不覆盖,实现了白色转化为要追踪的蓝色,也就是追踪效果。
  res = cv2.bitwise_and(frame,frame,mask=mask)
  #显示图像
  cv2.imshow('frame',frame)
  cv2.imshow('mask',mask)
  cv2.imshow('res',res)
  k = cv2.waitKey(5)& 0xFF
  if k==27:
    break
#关闭窗口
cv2.destroyAllWindows()

关于颜色阈值图(百度)。

结果如下图所示。

总结

以上所述是小编给大家介绍的如何用OpenCV -python3实现视频物体追踪,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • Python+OpenCV实现实时眼动追踪的示例代码

    使用Python+OpenCV实现实时眼动追踪,不需要高端硬件简单摄像头即可实现,效果图如下所示. 项目演示参见:https://www.bilibili.com/video/av75181965/ 项目主程序如下: import sys import cv2 import numpy as np import process from PyQt5.QtCore import QTimer from PyQt5.QtWidgets import QApplication, QMainWindow

  • 浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

    使用摄像头追踪人脸由于血液流动引起的面部色素的微小变化实现实时脉搏评估. 效果如下(演示视频): 由于这是通过比较面部色素的变化评估脉搏所以光线.人体移动.不同角度.不同电脑摄像头等因素均会影响评估效果,实验原理是面部色素对比,识别效果存在一定误差,各位小伙伴且当娱乐,代码如下: import cv2 import numpy as np import dlib import time from scipy import signal # Constants WINDOW_TITLE = 'Pu

  • python+opencv实现动态物体追踪

    简单几行就可以实现对动态物体的追踪,足见opencv在图像处理上的强大. python代码: import cv2 import numpy as np camera=cv2.VideoCapture(0) firstframe=None while True: ret,frame = camera.read() if not ret: break gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) gray=cv2.GaussianBlur(gray,(21

  • OpenCV3.0+Python3.6实现特定颜色的物体追踪

    一.环境 win10.Python3.6.OpenCV3.x:编译器:pycharm5.0.3 二.实现目标 根据需要追踪的物体颜色,设定阈值,在视频中框选出需要追踪的物体. 三.实现步骤 1)根据需要追踪的物体颜色,设定颜色阈值,获取追踪物体的掩膜 代码:generate_threshold.py # -*- coding : utf-8 -*- # Author: Tom Yu import cv2 import numpy as np cap = cv2.VideoCapture(0)#获

  • 如何用OpenCV -python3实现视频物体追踪

    opencv OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口.该库也有大量的Python.Java and MATLAB/OCTAVE(版本2.

  • OpenCV+python3实现视频分解成图片

    OpenCV+python3将视频分解成图片,供大家参考,具体内容如下 我们在工作或学习时,偶尔需要将视频分解成图片,只取其中一段的图片就行了,而在网上下载转换工具又3比较麻烦,现在我们用python实现视频分解成图片的功能. 原视频截图如下: 代码如下: """ ------------------------------------------------- File Name: 01-video2jpg.py Description : Author : 小恋莫小哀 E

  • 通过OpenCV实现对指定颜色的物体追踪

    本文实现对特定颜色的物体追踪,我实验用的是绿萝的树叶. 新建脚本ball_tracking.py,加入代码: import argparse from collections import deque import cv2 import numpy as np 导入必要的包,然后定义一些函数 def grab_contours(cnts): # 如果 cv2.findContours 返回的轮廓元组的长度为"2",那么我们使用的是 OpenCV v2.4.v4-beta 或 v4-of

  • OpenCV+Python3.5 简易手势识别的实现

    检测剪刀石头布三种手势,通过摄像头输入,方法如下: 选用合适颜色空间及阈值提取皮肤部分 使用滤波腐蚀膨胀等方法去噪 边缘检测 寻用合适方法分类 OpenCV用摄像头捕获视频 采用方法:调用OpenCV--cv2.VideoCapture() def video_capture(): cap = cv2.VideoCapture(0) while True: # capture frame-by-frame ret, frame = cap.read() # our operation on th

  • OpenCV实现智能视频监控

    本文实例为大家分享了OpenCV实现智能视频监控的具体代码,供大家参考,具体内容如下 之前在做毕设的时候网上找个完整的实现代码挺麻烦的,自己做完分享一下 因为代码较为简单,没有将代码分开写在不同文件,有需要自己整合下哈 使用环境Visual Studio 2010 和 OpenCV 2.4.9 #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.hpp> #include <ctime> usi

  • Python OpenCV对本地视频文件进行分帧保存的实例

    如下所示: # coding=utf-8 import os import cv2 videos_src_path = "/home/wgp/视频/" video_formats = [".MP4", ".MOV"] frames_save_path = "/home/wgp/视频/" width = 320 height = 240 time_interval = 50 def video2frame(video_src_p

  • python opencv 读取本地视频文件 修改ffmpeg的方法

    Python + opencv 读取视频的三种情况: 情况一:通过摄像头采集视频 情况二:通过本地视频文件获取视频 情况三:通过摄像头录制视频,再读取录制的视频 摄像头采集.本地视频文件的读取.写视频文件,网上都有代码. 我发现情况一和情况三都没有问题,大家注意读取自己通过摄像头录制的视频文件是没有问题的.但读取其他视频都会发现帧率为0(如果你获取视频的帧率并打印出来的话),并且退出读取.这时候读取是不成功的. 进去正题:如何解决读取视频失败的情况.这个问题很普遍,以至在官方教程的程序下面都提示

  • python opencv读mp4视频的实例

    如下所示: #获得视频的格式 videoCapture = cv2.VideoCapture('/home/lw/3661.mp4') #获得码率及尺寸 fps = videoCapture.get(cv2.CAP_PROP_FPS) size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT))) fNUMS = videoCapture.get(

  • opencv设置采集视频分辨率方式

    如下所示: #include <opencv2\opencv.hpp> #include<ctime> using namespace cv; using namespace std; int main( ) { //[1]从摄像头读入视频 VideoCapture capture(0); //[2]循环显示每一帧 int j=0; capture.set(CV_CAP_PROP_FRAME_WIDTH, 1080); capture.set(CV_CAP_PROP_FRAME_H

随机推荐