Java实现Floyd算法的示例代码

目录
  • 一 问题描述
  • 二 代码
  • 三 实现

一 问题描述

求节点0到节点2的最短路径。

二 代码

package graph.floyd;

import java.util.Scanner;

public class Floyd {
    static final int MaxVnum = 100;  // 顶点数最大值
    static final int INF = 0x3f3f3f3f; //无穷大
    static final int dist[][] = new int[MaxVnum][MaxVnum]; // 最短距离
    static final int p[][] = new int[MaxVnum][MaxVnum]; // 前驱数组
    static final boolean flag[] = new boolean[MaxVnum]; // 如果 s[i] 等于 true,说明顶点 i 已经加入到集合 S ;否则顶点 i 属于集合 V-S

    static int locatevex(AMGraph G, char x) {
        for (int i = 0; i < G.vexnum; i++) // 查找顶点信息的下标
            if (x == G.Vex[i])
                return i;
        return -1; // 没找到
    }

    static void CreateAMGraph(AMGraph G) {
        Scanner scanner = new Scanner(System.in);
        int i, j;
        char u, v;
        int w;
        System.out.println("请输入顶点数:");
        G.vexnum = scanner.nextInt();
        System.out.println("请输入边数:");
        G.edgenum = scanner.nextInt();
        System.out.println("请输入顶点信息:");

        // 输入顶点信息,存入顶点信息数组
        for (int k = 0; k < G.vexnum; k++) {
            G.Vex[k] = scanner.next().charAt(0);
        }
        //初始化邻接矩阵所有值为0,如果是网,则初始化邻接矩阵为无穷大
        for (int m = 0; m < G.vexnum; m++)
            for (int n = 0; n < G.vexnum; n++)
                if (m != n)
                    G.Edge[m][n] = INF;
                else
                    G.Edge[m][n] = 0; // 注意m==n时,设置为 0

        System.out.println("请输入每条边依附的两个顶点及权值:");
        while (G.edgenum-- > 0) {
            u = scanner.next().charAt(0);
            v = scanner.next().charAt(0);
            w = scanner.nextInt();

            i = locatevex(G, u);// 查找顶点 u 的存储下标
            j = locatevex(G, v);// 查找顶点 v 的存储下标
            if (i != -1 && j != -1)
                G.Edge[i][j] = w; //有向图邻接矩阵
            else {
                System.out.println("输入顶点信息错!请重新输入!");
                G.edgenum++; // 本次输入不算
            }
        }
    }

    static void Floyd(AMGraph G) { // 用 Floyd 算法求有向网 G 中各对顶点 i 和 j 之间的最短路径
        int i, j, k;
        for (i = 0; i < G.vexnum; i++)                // 各对结点之间初始已知路径及距离
            for (j = 0; j < G.vexnum; j++) {
                dist[i][j] = G.Edge[i][j];
                if (dist[i][j] < INF && i != j)
                    p[i][j] = i;    // 如果 i 和 j 之间有弧,则将 j 的前驱置为 i
                else p[i][j] = -1;  // 如果 i 和 j 之间无弧,则将 j 的前驱置为 -1
            }
        for (k = 0; k < G.vexnum; k++)
            for (i = 0; i < G.vexnum; i++)
                for (j = 0; j < G.vexnum; j++)
                    if (dist[i][k] + dist[k][j] < dist[i][j]) { // 从 i 经 k 到 j 的一条路径更短
                        dist[i][j] = dist[i][k] + dist[k][j]; // 更新dist[i][j]
                        p[i][j] = p[k][j];   // 更改 j 的前驱
                    }
    }

    static void print(AMGraph G) { // 输出邻接矩阵
        int i, j;
        for (i = 0; i < G.vexnum; i++) {//输出最短距离数组
            for (j = 0; j < G.vexnum; j++)
                System.out.print(dist[i][j] + "\t");
            System.out.println();
        }
        System.out.println();
        for (i = 0; i < G.vexnum; i++) {//输出前驱数组
            for (j = 0; j < G.vexnum; j++)
                System.out.print(p[i][j] + "\t");
            System.out.println();
        }
    }

    static void DisplayPath(AMGraph G, int s, int t) { // 显示最短路径
        if (p[s][t] != -1) {
            DisplayPath(G, s, p[s][t]);
            System.out.print(G.Vex[p[s][t]] + "-->");
        }
    }

    public static void main(String[] args) {
        char start, destination;
        int u, v;
        AMGraph G = new AMGraph();
        CreateAMGraph(G);
        Floyd(G);
        print(G);
        System.out.print("请依次输入路径的起点与终点的名称:");
        Scanner scanner = new Scanner(System.in);
        start = scanner.next().charAt(0);
        destination = scanner.next().charAt(0);
        u = locatevex(G, start);
        v = locatevex(G, destination);
        DisplayPath(G, u, v);
        System.out.println(G.Vex[v]);
        System.out.println("最短路径的长度为:" + dist[u][v]);
        System.out.println();
    }
}

class AMGraph {
    char Vex[] = new char[Floyd.MaxVnum];
    int Edge[][] = new int[Floyd.MaxVnum][Floyd.MaxVnum];
    int vexnum; // 顶点数
    int edgenum; // 边数
}

三 实现

白色为输出,绿色为输入。

到此这篇关于Java实现Floyd算法的示例代码的文章就介绍到这了,更多相关Java Floyd算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java Floyd算法求有权图(非负权)的最短路径并打印

    状态转移方程:d(i,j) = min(d(i,j),d(i,k)+d(k,j)),其中i<k<j 思路对于每一个k(i<k<j),全部遍历下来之后,肯定会发生一次有效的比较 public class FloydTest { private static int[][] matrix; private static int[][] path; public static void main(String[] args) { initMatrixAndPath( new int[][

  • java实现Floyd算法

    Floyd算法:用于多源最短路径的求解,算出来的是所有的节点到其余各节点之间的最短距离. 该算法的思路是:首先初始化距离矩阵,然后从第一个点开始逐渐更新矩阵点值.d[i][j]表示从i点到j点的距离.第k次更新时,判断d[i][k]+d[k][j]与d[i][j]的大小,如果前者小,则更新这个值,否则不变. 给一个例子: 具体的floyd实现算法如下[java] view plain copy package com.blyang; public class Floyd { int[][] Ma

  • Java实现Floyd算法求最短路径

    本文实例为大家分享了Java实现Floyd算法求最短路径的具体代码,供大家参考,具体内容如下 import java.io.FileInputStream; import java.io.FileNotFoundException; import java.util.Scanner; public class TestMainIO { /** * @param args * @throws FileNotFoundException */ public static void main(Stri

  • Java实现Floyd算法的示例代码

    目录 一 问题描述 二 代码 三 实现 一 问题描述 求节点0到节点2的最短路径. 二 代码 package graph.floyd; import java.util.Scanner; public class Floyd { static final int MaxVnum = 100; // 顶点数最大值 static final int INF = 0x3f3f3f3f; //无穷大 static final int dist[][] = new int[MaxVnum][MaxVnum

  • Java实现查找算法的示例代码(二分查找、插值查找、斐波那契查找)

    目录 1.查找概述 2.顺序查找 3.二分查找 3.1 二分查找概述 3.2 二分查找实现 4.插值查找 4.1 插值查找概述 4.2 插值查找实现 5.斐波那契查找 5.1 斐波那契查找概述 5.2 斐波那契查找实现 5.3 总结 1.查找概述 查找表: 所有需要被查的数据所在的集合,我们给它一个统称叫查找表.查找表(Search Table)是由同一类型的数据元素(或记录)构成的集合. 查找(Searching): 根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录).

  • Java实现雪花算法的示例代码

    一.介绍 SnowFlow算法是Twitter推出的分布式id生成算法,主要核心思想就是利用64bit的long类型的数字作为全局的id.在分布式系统中经常应用到,并且,在id中加入了时间戳的概念,基本上保持不重复,并且持续一种向上增加的方式. 在这64bit中,其中``第一个bit是不用的,然后用其中的41个bit作为毫秒数,用10bit作为工作机器id,12bit`作为序列号.具体如下图所示: 第一个部分:0,这个是个符号位,因为在二进制中第一个bit如果是1的话,那么都是负数,但是我们生成

  • Java实现抽奖算法的示例代码

    目录 一.题目描述 二.解题思路 三.代码详解 四.优化抽奖算法 解题思路 代码详解 一.题目描述 题目: 小虚竹为了给粉丝送福利,决定在参与学习打卡活动的粉丝中抽一位幸运粉丝,送份小礼物.为了公平,要保证抽奖过程是随机的. 二.解题思路 1.把参与的人员加到集合中 2.使用Random对象获取随机数 3.把随机数当下标,获取集合中的幸运用户 三.代码详解 public class Basics28 { public static void main(String[] args) { List<

  • Java实现Dijkstra算法的示例代码

    目录 一 问题描述 二 实现 三 测试 一 问题描述 小明为位置1,求他到其他各顶点的距离. 二 实现 package graph.dijkstra; import java.util.Scanner; import java.util.Stack; public class Dijkstra { static final int MaxVnum = 100; // 顶点数最大值 static final int INF = 0x3f3f3f3f; //无穷大 static final int

  • Java实现Kruskal算法的示例代码

    目录 介绍 一.构建后的图 二.代码 三.测试 介绍 构造最小生成树还有一种算法,即 Kruskal 算法:设图 G=(V,E)是无向连通带权图,V={1,2,...n};设最小生成树 T=(V,TE),该树的初始状态只有 n 个节点而无边的非连通图T=(V,{}),Kruskal 算法将这n 个节点看成 n 个孤立的连通分支.它首先将所有边都按权值从小到大排序,然后值要在 T 中选的边数不到 n-1,就做这样贪心选择:在边集 E 中选择权值最小的边(i,j),如果将边(i,j)加入集合 TE

  • Java实现8种排序算法的示例代码

    冒泡排序 O(n2) 两个数比较大小,较大的数下沉,较小的数冒起来. public static void bubbleSort(int[] a) { //临时变量 int temp; //i是循环次数,也是冒泡的结果位置下标,5个数组循环5次 for (int i = 0; i < a.length; i++) { //从最后向前面两两对比,j是比较中下标大的值 for (int j = a.length - 1; j > i; j--) { //让小的数字排在前面 if (a[j] <

  • JAVA用递归实现全排列算法的示例代码

    求一个n阶行列式,一个比较简单的方法就是使用全排列的方法,那么简述以下全排列算法的递归实现. 首先举一个简单的例子说明算法的原理,既然是递归,首先说明一下出口条件.以[1, 2]为例 首先展示一下主要代码(完整代码在后面),然后简述 //对数组array从索引为start到最后的元素进行全排列 public void perm(int[]array,int start) { if(start==array.length) { //出口条件 for(int i=0;i<array.length;i

  • Java实现基本排序算法的示例代码

    目录 1. 概述 2. 插入排序 2.1 直接插入排序 2.2 希尔排序(缩小增量排序) 3. 选择排序 3.1 直接选择排序 3.2 堆排序 4. 交换排序 4.1 冒泡排序 4.2 快速排序 5. 归并排序 6. 计数排序(非比较类型的排序) 7. 排序算法总结 1. 概述 排序概念:就是将一串记录按照其中某个或某些关键字的大小,递增或递减的排列起来的操作. 稳定性:通俗的将就是数据元素不发生有间隔的交换,例如: 内部排序:数据元素全部放在内存中的排序 外部排序:数据元素太多不能一次加载到内

  • Java实现拓扑排序算法的示例代码

    目录 拓扑排序原理 1.点睛 2.拓扑排序 3.算法步骤 4.图解 拓扑排序算法实现 1.拓扑图 2.实现代码 3.测试 拓扑排序原理 1.点睛 一个无环的有向图被称为有向无环图.有向无环图是描述一个工程.计划.生产.系统等流程的有效工具.一个大工程可分为若干子工程(活动),活动之间通常有一定的约束,例如先做什么活动,有什么活动完成后才可以开始下一个活动. 用节点表示活动,用弧表示活动之间的优先关系的有向图,被称为 AOV 网. 在 AOV 网中,若从节点 i 到节点 j 存在一条有向路径,则称

随机推荐