TensorFlow命名空间和TensorBoard图节点实例

一,命名空间函数

tf.variable_scope
tf.name_scope
先以下面的代码说明两者的区别

 # 命名空间管理函数
'''
说明tf.variable_scope和tf.name_scope的区别
'''
def manage_namespace():
 with tf.variable_scope("foo"):
  # 在命名空间foo下获取变量"bar",于是得到的变量名称为"foo/bar"。
  a = tf.get_variable("bar",[1]) #获取变量名称为“bar”的变量
  print a.name  #输出:foo/bar:0
 with tf.variable_scope("bar"):
  # 在命名空间bar下获取变量"bar",于是得到的变量名称为"bar/bar"。
  a = tf.get_variable("bar",[1])
  print a.name  #输出:bar/bar:0
 with tf.name_scope("a"):
  # 使用tf.Variable函数生成变量会受tf.name_scope影响,于是得到的变量名称为"a/Variable"。
  a = tf.Variable([1]) #新建变量
  print a.name  #输出:a/Variable:0

  # 使用tf.get_variable函数生成变量不受tf.name_scope影响,于是变量并不在a这个命名空间中。
  a = tf.get_variable("b",[1])
  print a.name  #输出:b:0
 with tf.name_scope("b"):
  # 使用tf.get_variable函数生成变量不受tf.name_scope影响,所以这里将试图获取名称
  # 为“b”的变量。然而这个变量已经被声明了,于是这里会报重复声明的错误
  tf.get_variable("b",[1])#提示错误

二,TensorBoard计算图查看

1 以以下代码实例,为指定任何的命名空间

def practice_num1():
# 练习1: 构建简单的计算图
 input1 = tf.constant([1.0, 2.0, 3.0],name="input1")
 input2 = tf.Variable(tf.random_uniform([3]),name="input2")
 output = tf.add_n([input1,input2],name = "add")

#生成一个写日志的writer,并将当前的tensorflow计算图写入日志
 writer = tf.summary.FileWriter(ROOT_DIR + "/log",tf.get_default_graph())
 writer.close()

如何使用TensorBoard的过程不再介绍。查看未指明命名空间的运算图

2 修改代码制定命名空间之后的代码

def practice_num1_modify():
 #将输入定义放入各自的命名空间中,从而使得tensorboard可以根据命名空间来整理可视化效果图上的节点
 # 练习1: 构建简单的计算图
 with tf.name_scope("input1"):
  input1 = tf.constant([1.0, 2.0, 3.0],name="input1")
 with tf.name_scope("input2"):
  input2 = tf.Variable(tf.random_uniform([3]),name="input2")
 output = tf.add_n([input1,input2],name = "add")

#生成一个写日志的writer,并将当前的tensorflow计算图写入日志
 writer = tf.summary.FileWriter(ROOT_DIR + "/log",tf.get_default_graph())
 writer.close()

查看运算图

上图只包含命名的两个命名空间的节点,我们可以点击名称“input2”的图标上的+号,展开该命名空间

效果:通过命名空间可以整理可视化效果图上的节点,使可视化的效果更加清晰。

以上这篇TensorFlow命名空间和TensorBoard图节点实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Tensorflow的可视化工具Tensorboard的初步使用详解

    当使用Tensorflow训练大量深层的神经网络时,我们希望去跟踪神经网络的整个训练过程中的信息,比如迭代的过程中每一层参数是如何变化与分布的,比如每次循环参数更新后模型在测试集与训练集上的准确率是如何的,比如损失值的变化情况,等等.如果能在训练的过程中将一些信息加以记录并可视化得表现出来,是不是对我们探索模型有更深的帮助与理解呢? Tensorflow官方推出了可视化工具Tensorboard,可以帮助我们实现以上功能,它可以将模型训练过程中的各种数据汇总起来存在自定义的路径与日志文件中,然后

  • tensorflow查看ckpt各节点名称实例

    运行下列脚本,可以打印出模型各个节点变量的名称: from tensorflow.python import pywrap_tensorflow import os checkpoint_path=os.path.join('model.ckpt-131805') reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map=reader.get_variable_to_shape_map() for

  • tensorflow通过模型文件,使用tensorboard查看其模型图Graph方式

    Google提供了一个工具,TensorBoard,它能以图表的方式分析你在训练过程中汇总的各种数据,其中包括Graph结构. 所以我们可以简单的写几行Pyhton,加载Graph,只在logdir里,输出Graph结构数据,并可以查看其图结构. 执行下述代码,将数据流图保存为图片,在目录F:/tensorflow/graph下生成文件events.out.tfevents.1508420019.XM-PC import tensorflow as tf from tensorflow.pyth

  • Tensorflow获取张量Tensor的具体维数实例

    获取Tensor的维数 >>> import tensorflow as tf >>> tf.__version__ '1.2.0-rc1' >>> x=tf.placeholder(dtype=float32,shape=[1,2,3,4]) >>> x=tf.placeholder(dtype=tf.float32,shape=[1,2,3,4]) >>> x.shape TensorShape([Dimensi

  • Python基于Tensor FLow的图像处理操作详解

    本文实例讲述了Python基于Tensor FLow的图像处理操作.分享给大家供大家参考,具体如下: 在对图像进行深度学习时,有时可能图片的数量不足,或者希望网络进行更多的学习,这时可以对现有的图片数据进行处理使其变成一张新的图片,在此基础上进行学习,从而提高网络识别的准确率. 1.图像解码显示 利用matplot库可以方便简洁地在jupyter内对图片进行绘制与输出,首先通过tf.gfile打开图片文件,并利用函数tf.image.decode_jpeg将jpeg图片解码为三位矩阵,之后便可以

  • 如何定义TensorFlow输入节点

    TensorFlow中有如下几种定义输入节点的方法. 通过占位符定义:一般使用这种方式. 通过字典类型定义:一般用于输入比较多的情况. 直接定义:一般很少使用. 一 占位符定义 示例: 具体使用tf.placeholder函数,代码如下: X = tf.placeholder("float") Y = tf.placeholder("float") 二 字典类型定义 1 实例 通过字典类型定义输入节点 2 关键代码 # 创建模型 # 占位符 inputdict =

  • TensorFlow命名空间和TensorBoard图节点实例

    一,命名空间函数 tf.variable_scope tf.name_scope 先以下面的代码说明两者的区别 # 命名空间管理函数 ''' 说明tf.variable_scope和tf.name_scope的区别 ''' def manage_namespace(): with tf.variable_scope("foo"): # 在命名空间foo下获取变量"bar",于是得到的变量名称为"foo/bar". a = tf.get_varia

  • TensorFlow可视化工具TensorBoard默认图与自定义图

    目录 一.图 1.默认图 1.调用方法查看默认图属性 2..graph查看图属性 代码 2.自定义图(创建图) 1.创建自定义图 2.创建静态图 3.开启会话(运行) 4.查看自定义图 代码 二.TensorBoard可视化 1.可视化处理 2. 打开TensorBoard 1.先移到文件夹的前面 2. 打开TensorBoard(从文件中获取数据) 3.打开给定的网址 总代码 一.图 图:数据(张量Tenrsor)+ 操作(节点Operation) (静态) 图可以用:1.默认图:2.自定义图

  • JS焦点图,JS 多个页面放多个焦点图的实例

    如下所示: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>js同一页面可多次调用的图片幻

  • WPF 自定义雷达图开发实例教程

    自定义雷达图表如下: 1.创建UserControl,名为"RadarChartControl" 前台: <UserControl x:Class="WpfApplication2.RadarChartControl" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/win

  • Python之——生成动态路由轨迹图的实例

    一.scapy简介与安装 scapy(http://www.secdev.org/projects/scapy/)是一个强大的交互式数据包处理程序,它能够对数据包进行伪造或解包,包括发送数据包.包嗅探.应答和反馈匹配等功能.可以用在处理网络扫描.路由跟踪.服务探测.单元测试等方面,本节主要针对scapy的路由跟踪功能,实现TCP协议方式对服务可用性的探测,比如常用的80(HTTP)与443(HTTPS)服务,并生成美观的路由线路图报表,让管理员清晰了解探测点到目标主机的服务状态.骨干路由节点所处

  • 利用Tkinter和matplotlib两种方式画饼状图的实例

    当我们学习python的时候,总会用到一些常用的模块,接下来我就详细讲解下利用两种不同的方式画饼状图. 首先利用[Tkinter]中的canvas画布来画饼状图: from tkinter import Tk, Canvas def DrawPie(): #创建窗口 windows=Tk() #添加标题 windows.title("画饼图") # 设置画布样式 canvas=Canvas(windows,height=500,width=500) # 将画布打包到窗口 canvas.

  • 微信小程序 swiper组件构建轮播图的实例

    微信小程序 swiper组件构建轮播图的实例 实现效果图: wxml基础文件: <view class="classname"> <swiper indicator-dots="true" interval="1000" autoplay="true" indicator-active-color="red"> <swiper-item><image src=&qu

  • 使用html+js+css 实现页面轮播图效果(实例讲解)

    html 页面 <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=

  • 纯JS焦点图特效实例(可一个页面多用)

    实例如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Co

  • Collatz 序列、逗号代码、字符图网格实例

    1.collatz序列 编写一个名为 collatz()的函数,它 有一个名为 number 的参数.如果参数是偶数, 那么 collatz()就打印出 number // 2,并返回该值.如果 number 是奇数,collatz()就打 印并返回 3 * number + 1. 然后编写一个程序,让用户输入一个整数,并不断对这个数调用 collatz(),直 到函数返回值1. #!/usr/bin/env python3 # -*- coding:utf-8 -*- def collatz(

随机推荐