tensorflow模型保存、加载之变量重命名实例

话不多说,干就完了。

变量重命名的用处?

简单定义:简单来说就是将模型A中的参数parameter_A赋给模型B中的parameter_B

使用场景:当需要使用已经训练好的模型参数,尤其是使用别人训练好的模型参数时,往往别人模型中的参数命名方式与自己当前的命名方式不同,所以在加载模型参数时需要对参数进行重命名,使得代码更简洁易懂。

实现方法:

1)、模型保存

import os
import tensorflow as tf

weights = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2],
                            mean=0.0,
                            stddev=0.1),
           dtype=tf.float32,
           name="weights")
biases = tf.Variable(initial_value=tf.zeros(shape=[2]),
           dtype=tf.float32,
           name="biases")

weights_2 = tf.Variable(initial_value=weights.initialized_value(),
            dtype=tf.float32,
            name="weights_2")

# saver checkpoint
if os.path.exists("checkpoints") is False:
  os.makedirs("checkpoints")

saver = tf.train.Saver()
with tf.Session() as sess:
  init_op = [tf.global_variables_initializer()]
  sess.run(init_op)
  saver.save(sess=sess, save_path="checkpoints/variable.ckpt")

2)、模型加载(变量名称保持不变)

import tensorflow as tf
from matplotlib import pyplot as plt
import os

current_path = os.path.dirname(os.path.abspath(__file__))

def restore_variable(sess):
  # need not initilize variable, but need to define the same variable like checkpoint
  weights = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2],
                              mean=0.0,
                              stddev=0.1),
             dtype=tf.float32,
             name="weights")
  biases = tf.Variable(initial_value=tf.zeros(shape=[2]),
             dtype=tf.float32,
             name="biases")

  weights_2 = tf.Variable(initial_value=weights.initialized_value(),
              dtype=tf.float32,
              name="weights_2")

  saver = tf.train.Saver()

  ckpt_path = os.path.join(current_path, "checkpoints", "variable.ckpt")
  saver.restore(sess=sess, save_path=ckpt_path)

  weights_val, weights_2_val = sess.run(
    [
      tf.reshape(weights, shape=[2048]),
      tf.reshape(weights_2, shape=[2048])
    ]
  )

  plt.subplot(1, 2, 1)
  plt.scatter([i for i in range(len(weights_val))], weights_val)
  plt.subplot(1, 2, 2)
  plt.scatter([i for i in range(len(weights_2_val))], weights_2_val)
  plt.show()

if __name__ == '__main__':
  with tf.Session() as sess:
    restore_variable(sess)

3)、模型加载(变量重命名)

import tensorflow as tf
from matplotlib import pyplot as plt
import os

current_path = os.path.dirname(os.path.abspath(__file__))

def restore_variable_renamed(sess):
  conv1_w = tf.Variable(initial_value=tf.truncated_normal(shape=[1024, 2],
                              mean=0.0,
                              stddev=0.1),
             dtype=tf.float32,
             name="conv1_w")
  conv1_b = tf.Variable(initial_value=tf.zeros(shape=[2]),
             dtype=tf.float32,
             name="conv1_b")

  conv2_w = tf.Variable(initial_value=conv1_w.initialized_value(),
             dtype=tf.float32,
             name="conv2_w")

  # variable named 'weights' in ckpt assigned to current variable conv1_w
  # variable named 'biases' in ckpt assigned to current variable conv1_b
  # variable named 'weights_2' in ckpt assigned to current variable conv2_w
  saver = tf.train.Saver({
    "weights": conv1_w,
    "biases": conv1_b,
    "weights_2": conv2_w
  })

  ckpt_path = os.path.join(current_path, "checkpoints", "variable.ckpt")
  saver.restore(sess=sess, save_path=ckpt_path)

  conv1_w__val, conv2_w__val = sess.run(
    [
      tf.reshape(conv1_w, shape=[2048]),
      tf.reshape(conv2_w, shape=[2048])
    ]
  )

  plt.subplot(1, 2, 1)
  plt.scatter([i for i in range(len(conv1_w__val))], conv1_w__val)
  plt.subplot(1, 2, 2)
  plt.scatter([i for i in range(len(conv2_w__val))], conv2_w__val)
  plt.show()

if __name__ == '__main__':
  with tf.Session() as sess:
    restore_variable_renamed(sess)

总结:

# 之前模型中叫 'weights'的变量赋值给当前的conv1_w变量

# 之前模型中叫 'biases' 的变量赋值给当前的conv1_b变量

# 之前模型中叫 'weights_2'的变量赋值给当前的conv2_w变量

saver = tf.train.Saver({

"weights": conv1_w,

"biases": conv1_b,

"weights_2": conv2_w

})

以上这篇tensorflow模型保存、加载之变量重命名实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 从训练好的tensorflow模型中打印训练变量实例

    从tensorflow 训练后保存的模型中打印训变量:使用tf.train.NewCheckpointReader() import tensorflow as tf reader = tf.train.NewCheckpointReader('path/alexnet/model-330000') dic = reader.get_variable_to_shape_map() print dic 打印变量 w = reader.get_tensor("fc1/W") print t

  • tensorflow如何继续训练之前保存的模型实例

    一:需重定义神经网络继续训练的方法 1.训练代码 import numpy as np import tensorflow as tf x_data=np.random.rand(100).astype(np.float32) y_data=x_data*0.1+0.3 weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w") biases=tf.Variable(tf.zeros([1]),name="b&qu

  • TensorFlow 模型载入方法汇总(小结)

    一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变量集合 全局变量集合 reshape 加载时是否恢复变量形状 True sharded 是否将变量轮循放在所有设备上 True max_to_keep 保留最近检查点个数 5 restore_sequentially 是否按顺序恢复变量,模型较大时顺序恢复内存消耗小 True var_list是字典

  • tensorflow实现打印ckpt模型保存下的变量名称及变量值

    有时候会需要通过从保存下来的ckpt文件来观察其保存下来的训练完成的变量值. ckpt文件名列表:(一般是三个文件) xxxxx.ckpt.data-00000-of-00001 xxxxx.ckpt.index xxxxx.ckpt.meta import os from tensorflow.python import pywrap_tensorflow checkpoint_path = os.path.join("文件夹路径", "xxxxx.ckpt")

  • TensorFlow入门使用 tf.train.Saver()保存模型

    关于模型保存的一点心得 saver = tf.train.Saver(max_to_keep=3) 在定义 saver 的时候一般会定义最多保存模型的数量,一般来说,如果模型本身很大,我们需要考虑到硬盘大小.如果你需要在当前训练好的模型的基础上进行 fine-tune,那么尽可能多的保存模型,后继 fine-tune 不一定从最好的 ckpt 进行,因为有可能一下子就过拟合了.但是如果保存太多,硬盘也有压力呀.如果只想保留最好的模型,方法就是每次迭代到一定步数就在验证集上计算一次 accurac

  • tensorflow模型保存、加载之变量重命名实例

    话不多说,干就完了. 变量重命名的用处? 简单定义:简单来说就是将模型A中的参数parameter_A赋给模型B中的parameter_B 使用场景:当需要使用已经训练好的模型参数,尤其是使用别人训练好的模型参数时,往往别人模型中的参数命名方式与自己当前的命名方式不同,所以在加载模型参数时需要对参数进行重命名,使得代码更简洁易懂. 实现方法: 1).模型保存 import os import tensorflow as tf weights = tf.Variable(initial_value

  • tensorflow 加载部分变量的实例讲解

    tensorflow模型保存为saver = tf.train.Saver()函数,saver.save()保存模型,代码如下: import tensorflow as tf v1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1") v2= tf.Variable(tf.zeros([200]), name="v2") saver = tf.train.Saver() with tf

  • TensorFlow模型保存和提取的方法

    一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/model.ckpt") ,实际在这个文件目录下会生成4个人文件: checkpoint文件保存了一个录下多有的模型文件列表,model.ckpt.meta保存了TensorFlow计算图的结构信息,model

  • TensorFlow模型保存/载入的两种方法

    TensorFlow 模型保存/载入 我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来.tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.joblib的dump与load方法就可以保存与载入使用.而tensorflow由于有graph, operation 这些概念,保存与载入模型稍显麻烦. 一.基本方法 网上搜索tensorflow模型保存,搜到的大多是基本的方法.即 保存 定义变量 使用saver.s

  • Tensorflow 合并通道及加载子模型的方法

    最近在使用Tensorflow 实现DNN网络时,遇到一些问题.目前网上关于Tensorflow的资料还比较少,现把问题和解决方法写出来,仅供参考. (1)将两个子模型的输出合并到一个通道,例如同时连接到一个全连接层如图 合并方法为 tf.concat()函数.此函数需要两个个参数 concat(0或1,[合并节点1,合并节点2] ).0 或 1 代表节点合并的方式:0 代表合并后列相同,行增加:1 代表合并后行相同,列增加. 上图所示合并方法为: X_20 = tf.concat(1, [X_

  • 浅谈tensorflow模型保存为pb的各种姿势

    一,直接保存pb 1, 首先我们当然可以直接在tensorflow训练中直接保存为pb为格式,保存pb的好处就是使用场景是实现创建模型与使用模型的解耦,使得创建模型与使用模型的解耦,使得前向推导inference代码统一.另外的好处就是保存为pb的时候,模型的变量会变成固定的,导致模型的大小会大大减小. 这里稍稍解释下pb:是MetaGraph的protocol buffer格式的文件,MetaGraph包括计算图,数据流,以及相关的变量和输入输出 主要使用tf.SavedModelBuilde

  • Tensorflow 2.4加载处理图片的三种方式详解

    目录 前言 数据准备 使用内置函数读取并处理磁盘数据 自定义方式读取和处理磁盘数据 从网络上下载数据 前言 本文通过使用 cpu 版本的 tensorflow 2.4 ,介绍三种方式进行加载和预处理图片数据. 这里我们要确保 tensorflow 在 2.4 版本以上 ,python 在 3.8 版本以上,因为版本太低有些内置函数无法使用,然后要提前安装好 pillow 和 tensorflow_datasets ,方便进行后续的数据加载和处理工作. 由于本文不对模型进行质量保证,只介绍数据的加

  • Laravel框架模板加载,分配变量及简单路由功能示例

    本文实例讲述了Laravel框架模板加载,分配变量及简单路由功能.分享给大家供大家参考,具体如下: 作为世界上第一的PHP框架,学习Laraver势在必行,虽然国内盛行ThinkPHP,但是多会一个框架总是对自己有好处的. 通过前面的文章Laravel框架在本地虚拟机快速安装的方法,我们已经可以顺利安装Laravel 安装之后,在目录laravel\app\Http下,有一个routes.php文件,重点了,这个就是控制全站的路由文件. Route::get('/', function () {

  • tensorflow mnist 数据加载实现并画图效果

    关于 TensorFlow TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等.TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度

  • Python 保存加载mat格式文件的示例代码

    mat为matlab常用存储数据的文件格式,python的scipy.io模块中包含保存和加载mat格式文件的API,使用极其简单,不再赘述:另附简易示例如下: # -*- coding: utf-8 -*- import numpy as np import scipy.io as scio # data data = np.array([1,2,3]) data2 = np.array([4,5,6]) # save mat (data format: dict) scio.savemat(

随机推荐