Numpy ndarray 多维数组对象的使用

介绍

目前它是Python数值计算中最为重要的基础包,将numpy的数组的对象作为数据交互的通用语,一般我们要充分理解好矩阵计算的原理,这需要你要有一些线性代数的基础知识。在对数据处理、清洗、构造子集、过滤、变换以及其他计算的过程快速的进行向量化计算,后续也会介绍R语言,因为R语言就是一个原生态基于向量化计算的编程语言。

Numpy的核心特征之一就是一个N维数组对象——ndarray,这是一个快速灵活的大型数据集容器,可以进行科学数值计算。

代码操作

import numpy as np

导入好包之后,我们随机生成一个2*3的数组,2行3列的随机数组

data=np.random.randn(2,3)

对数组的简单操作

data*10

>>array([[ 9.00839244, -17.67421607, -0.03125454],
  [ 19.79906711, -2.62145167, -12.55106031]])

data+data

>>array([[ 1.80167849, -3.53484321, -0.00625091],
  [ 3.95981342, -0.52429033, -2.51021206]])

data.shape

>>(2, 3)

data.dtype

>>dtype('float64')

生成ndarray

生成数组的最简单的方法就是使用array函数,对于传入的类型可以是其他任意的序列,如你传入一个列表,那么它就会接收这个列表并转换为数组类型,如果传入的是多个列表那么它就会接收多个,在线性代数里面我们叫这个是维度,比如下面的就是一个2行3列的矩阵。

data1=[[1,2,3],[4,5,6]]

arry1=np.array(data1)

arry1

>>array([[1, 2, 3],
  [4, 5, 6]])

arry1.ndim

>>2

arry1.shape

>>2, 3)

除了这个我们还可以使用其他的函数来创建数组,比如给定了长度和形状类型就会一次性创建完毕,这里是创建了一个2*3的元素是1的数组

np.ones((2,3))
>>array([[1., 1., 1.],
  [1., 1., 1.]])

numpy里面也有像Python range()函数一样的效果——np.arange(),操作效果和Python的range函数有异曲同工之妙,start,stop,step都是可设置的。

对角矩阵生成

ndarray的数据类型

如何查看数组的数据类型以及如何进行转换,在numpy里面整型:int32,浮点型:float64.

Numpy 数组计算

基于numpy的数组计算在之前我也演示了一些,四则运算,加减乘除,以及一些数组运算,每一个数组与数组之间的计算都是元素相互对于的,并不是独立的,这个是我们需要理解清楚的地方,有趣的是,我们需要比较两个相同维数的数组,我们可以利用> < = 来查看,它返回的是布尔值。

基础索引和切片

在一维的数组里面,和Python列表里面的所有一样,如果是高维的就有所不同了,就需要利用多重索引了,这里的变量和上面的一样

如果产生了一个三位的数组,比如一个2*2*3的数组,我们按照索引,可以自动索引出来第一个的的数组

对于高维的数组的切片,我们需要注意的是,它的切片原理是按照数组里面的数组进行切片的,比如一个二维数组(2*3*2)的,我们需要取出每个单位数组里面的第一个元素,我们应该如何做

很明显的我们可以看出多维数组的切片特点:我这里抽象化为列表的特点来解释,比如我们可以把多维数组看做是一个列表里面的多个列表,也就是嵌套列表,然后我们按照索引来取,上述例子就是首先取出两个大的数组,然后从这个两个大的数组里面再去前两个数组,最后取出索引为0的元素,这样层层递减,一步一步的索引是numpy索引的特点,之所以大数据技术之分析与计算,要用到矩阵计算的优化,就是来源于它的分而治之的原理和特点。

布尔索引

其实就是对数组里面的值或元素进行比较,之中返回布尔值即可

上述例子就是产生了一个一维的字符串的数组,然后我们通过比较得出布尔值来获取data的值,自然就获取到data[0]的数组啦

注意在Python里面我们可以用and or来判断,在numpy里面我们需要&(and)|(or)来解决你的需求,记住哟

特殊索引

我们需要索引出不同位置的数组,这个时候我们还在一个一个的取出来吗,当然不是我们可以利用特殊的索引来解决这个问题,比如下面的例子

下面我们来看看这个特殊索引的其他的用法

第一步我们我们按照索引取出对角线的元素,第二的一个我们想要得到一个二维的数组,我们取出一个大数组里面索引位置分别为:1 5 7 2的一维数组然后我们利用索引位置的调换,把元素重新的进行了排序。

数组的转换和换轴

我们随机生成一个0-15的元素组成3*5的一个数组,然后利用.T属性,如果学过线性代数的小伙伴一定对这个不陌生,矩阵的转置:把行变成列,把列变成行。

总结

在numpy的数组操作我们现在其实并没有发现这个对我们的数据分析有什么用处,这个很正常。就像我们之前学习线性代数,我们发现这个矩阵对我们并没什么用,但是当你使用MATLAB的时候才发现“书到用时方恨少”的道理。

到此这篇关于Numpy ndarray 多维数组对象的使用的文章就介绍到这了,更多相关Numpy ndarray 多维数组对象内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • numpy库ndarray多维数组的维度变换方法(reshape、resize、swapaxes、flatten)

    numpy库对多维数组有非常灵巧的处理方式,主要的处理方法有: .reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变 .resize(shape) : 与.reshape()功能一致,但修改原数组 In [22]: a = np.arange(20) #原数组不变 In [23]: a.reshape([4,5]) Out[23]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14

  • np.newaxis 实现为 numpy.ndarray(多维数组)增加一个轴

    如下所示: >> type(np.newaxis) NoneType >> np.newaxis == None True np.newaxis 在使用和功能上等价于 None,查看源码发现:newaxis = None,其实就是 None 的一个别名. 1. np.newaxis 的实用 >> x = np.arange(3) >> x array([0, 1, 2]) >> x.shape (3,) >> x[:, np.newa

  • numpy.ndarray 交换多维数组(矩阵)的行/列方法

    如下所示: >> import numpy as np >> P = np.eye(3) >> P array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) 交换第 0 行和第 2 行: >> P[[0, 2], :] = P[[2, 0], :] # P[(0, 2), :] = P[(2, 0), :] >> P array([[ 0., 0., 1.], [ 0., 1., 0.], [ 1.

  • Numpy ndarray 多维数组对象的使用

    介绍 目前它是Python数值计算中最为重要的基础包,将numpy的数组的对象作为数据交互的通用语,一般我们要充分理解好矩阵计算的原理,这需要你要有一些线性代数的基础知识.在对数据处理.清洗.构造子集.过滤.变换以及其他计算的过程快速的进行向量化计算,后续也会介绍R语言,因为R语言就是一个原生态基于向量化计算的编程语言. Numpy的核心特征之一就是一个N维数组对象--ndarray,这是一个快速灵活的大型数据集容器,可以进行科学数值计算. 代码操作 import numpy as np 导入好

  • python NumPy ndarray二维数组 按照行列求平均实例

    我就废话不多说了,直接上代码吧! c = np.array([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10]]) print(c.mean(axis=1))#行 print(c.mean(axis=0))#列 输出为: [ 2.5 5.5 8.5] [ 4. 5. 6. 7.] 以上这篇python NumPy ndarray二维数组 按照行列求平均实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • nditer—numpy.ndarray 多维数组的迭代操作

    1. Single array iteration >>> a = np.arange(6).reshape(2,3) >>> for x in np.nditer(a): ... print x, ... 0 1 2 3 4 5 也即默认是行序优先(row-major order,或者说是 C-order),这样迭代遍历的目的在于,实现和内存分布格局的一致性,以提升访问的便捷性: >>> for x in np.nditer(a.T): ... pr

  • NumPy实现ndarray多维数组操作

    简介 NumPy一个非常重要的作用就是可以进行多维数组的操作,多维数组对象也叫做ndarray.我们可以在ndarray的基础上进行一系列复杂的数学运算. 本文将会介绍一些基本常见的ndarray操作,大家可以在数据分析中使用. 创建ndarray 创建ndarray有很多种方法,我们可以使用np.random来随机生成数据: import numpy as np # Generate some random data data = np.random.randn(2, 3) data arra

  • NumPy实现多维数组中的线性代数

    目录 简介 图形加载和说明 图形的灰度 灰度图像的压缩 原始图像的压缩 总结 简介 本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算. 多维数据的线性代数通常被用在图像处理的图形变换中,本文将会使用一个图像的例子进行说明. 图形加载和说明 熟悉颜色的朋友应该都知道,一个颜色可以用R,G,B来表示,如果更高级一点,那么还有一个A表示透明度.通常我们用一个四个属性的数组来表示. 对于一个二维的图像来说,其分辨率可以看做是一个X*Y的矩阵,矩阵中的每个点的颜色都可以用(R,G

  • Python numpy实现二维数组和一维数组拼接的方法

    撰写时间:2017.5.23 一维数组 1.numpy初始化一维数组 a = np.array([1,2,3]); print a.shape 输出的值应该为(3,) 二维数组 2.numpy初始化二维数组 a = np.array([[1,2,3]]); b = np.array([[1],[2],[3]]); print a.shape//(1,3) print b.shape//(3,1) 注意(3,)和(3,1)的数组是不一样的,前者是一维数组,后者是二维数组. 拼接 3.numpy有很

  • Numpy将二维数组添加到空数组的实现

    使用append函数将一个二维数组添加到一个空数组,关键是维度要对的上 a=np.empty([0,3]) b = np.array([[1,2,3],[4,5,6]]) c=[[7,8,9]] print(a.shape) print(b.shape) a = np.append(a, b, axis=0) a = np.append(a, c, axis=0) print(a.shape) print(b.shape) 以上这篇Numpy将二维数组添加到空数组的实现就是小编分享给大家的全部内

  • Python 用NumPy创建二维数组的案例

    前言 上位机实战开发先放一放,今天来学习一个新的内容-NumPy的使用 1 一维数组 例:用普通方法生成一维数组 num = [0 for i in range(1,5)] # 创建一维数组 print(num) # 打印数组 print("-"*50) # 分割线 num[2]=6 # 将第三个元素修改位6 print(num) # 打印数组 print("-"*50) # 分割线 运行结果 例:用numpy生成一维数组 from numpy import * m

随机推荐