Python中的随机函数random详解

目录
  • 常规用法
  • 使用案例:

常规用法

用法 作用
random() 返回0<=n<1之间的随机浮点数n
random.uniform(a, b) 用于生成一个指定范围内的随机符点数
random.randint(a, b) 用于生成一个指定范围内的整数
random.randrange([start], stop[, step]) 从指定范围内,按指定基数递增的集合中 获取一个随机数
choice(seq) 从序列seq中返回随机的元素
shuffle(seq[, random]) 原地指定seq序列
sample(seq, n) 从序列seq中选择n个随机且独立的元素
gauss(mu, sigma) 返回一个平均值为mu标准差为sigma的高斯分布,也可以由正态分布函数生成normalvariate(mu, sigma)
lognormvariate(mu, sigma) 返回一个平均值为mu,标准差为sigma的对数正态分布

使用案例:

1.random():

2.random.uniform(a, b)

3.random.randint(a, b)

4.random.randrange([start],[ stop], step)

从指定范围【start,stop】内,按指定基数step递增的集合中获取一个随机数,如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, … 96, 98]序列中获取一个随机数。

5.choice(seq)

6.shuffle(seq[, random])

7.sample(seq, n) 随机获取指定长度的片段,获取后元序列长度不变。

8.gauss(mu, sigma)

9.lognormvariate(mu, sigma)

到此这篇关于Python中的随机函数random详解的文章就介绍到这了,更多相关Python random函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python中random.randint和random.randrange的区别详解

    在python中,通过导入random库,就能使用randint 和 randrange 这两个方法来产生随机整数.那这两个方法的区别在于什么地方呢?让我们一起来看看! 区别: randint 产生的随机数区间是包含左右极限的,也就是说左右都是闭区间的[1, n],能取到1和n.而 randrange 产生的随机数区间只包含左极限,也就是左闭右开的[1, n),1能取到,而n取不到.randint 产生的随机数是在指定的某个区间内的一个值,而 randrange 产生的随机数可以设定一个步长,也

  • python随机模块random的22种函数(小结)

    前言   随机数可以用于数学,游戏,安全等领域中,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性.平时数据分析各种分布的数据构造也会用到.   random模块,用于生成伪随机数,之所以称之为伪随机数,是因为真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结果是不可预测的,是不可见的.而计算机中的随机函数是按照一定算法模拟产生的,对于正常随机而言,会出现某个事情出现多次的情况.   但是伪随机在事情触发前设定好,就是这个十个事件各发生一次

  • python随机模块random使用方法详解

    random随机模块包括返回随机数的函数,可以用于模拟或者任何产生随机输出的程序. 一.random模块常用函数介绍 random.random() - 生成一个从0.0(包含)到 1.0(不包含)之间的随机浮点数: random.uniform(a, b) - 生成一个范围为 a≤N≤b 的随机数,随机数类型是浮点数: random.randint(a, b) - 生成一个范围为 a≤N≤b 的随机数,随机数的类型是整形,注意与random.uniform(a, b)区别: random.ra

  • Python中的随机函数random详解

    目录 常规用法 使用案例: 常规用法 用法 作用 random() 返回0<=n<1之间的随机浮点数n random.uniform(a, b) 用于生成一个指定范围内的随机符点数 random.randint(a, b) 用于生成一个指定范围内的整数 random.randrange([start], stop[, step]) 从指定范围内,按指定基数递增的集合中 获取一个随机数 choice(seq) 从序列seq中返回随机的元素 shuffle(seq[, random]) 原地指定s

  • python中的 zip函数详解及用法举例

    python中zip()函数用法举例 定义:zip([iterable, ...]) zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表).若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同.利用*号操作符,可以将list unzip(解压),看下面的例子就明白了: 示例1 x = [1, 2, 3] y = [4, 5, 6] z = [7, 8, 9] x

  • python中 logging的使用详解

    日志是用来记录程序在运行过程中发生的状况,在程序开发过程中添加日志模块能够帮助我们了解程序运行过程中发生了哪些事件,这些事件也有轻重之分. 根据事件的轻重可分为以下几个级别: DEBUG: 详细信息,通常仅在诊断问题时才受到关注.整数level=10 INFO: 确认程序按预期工作.整数level=20 WARNING:出现了异常,但是不影响正常工作.整数level=30 ERROR:由于某些原因,程序 不能执行某些功能.整数level=40 CRITICAL:严重的错误,导致程序不能运行.整数

  • Python中格式化format()方法详解

     Python中格式化format()方法详解 Python中格式化输出字符串使用format()函数, 字符串即类, 可以使用方法; Python是完全面向对象的语言, 任何东西都是对象; 字符串的参数使用{NUM}进行表示,0, 表示第一个参数,1, 表示第二个参数, 以后顺次递加; 使用":", 指定代表元素需要的操作, 如":.3"小数点三位, ":8"占8个字符空间等; 还可以添加特定的字母, 如: 'b' - 二进制. 将数字以2为基

  • Python中的asyncio代码详解

    asyncio介绍 熟悉c#的同学可能知道,在c#中可以很方便的使用 async 和 await 来实现异步编程,那么在python中应该怎么做呢,其实python也支持异步编程,一般使用 asyncio 这个库,下面介绍下什么是 asyncio : asyncio 是用来编写 并发 代码的库,使用 async/await 语法. asyncio 被用作多个提供高性能 Python 异步框架的基础,包括网络和网站服务,数据库连接库,分布式任务队列等等. asyncio 往往是构建 IO 密集型和

  • python 中xpath爬虫实例详解

    案例一: 某套图网站,套图以封面形式展现在页面,需要依次点击套图,点击广告盘链接,最后到达百度网盘展示页面. 这一过程通过爬虫来实现,收集百度网盘地址和提取码,采用xpath爬虫技术 1.首先分析图片列表页,该页按照更新先后顺序暂时套图封面,查看HTML结构.每一组"li"对应一组套图.属性href后面即为套图的内页地址(即广告盘链接页).所以,我们先得获取列表页内所有的内页地址(即广告盘链接页) 代码如下: import requests 倒入requests库 from lxml

  • 对Python中的@classmethod用法详解

    在Python面向对象编程中的类构建中,有时候会遇到@classmethod的用法. 总感觉有这种特殊性说明的用法都是高级用法,在我这个层级的水平中一般是用不到的. 不过还是好奇去查了一下. 大致可以理解为:使用了@classmethod修饰的方法是类专属的,而且是可以通过类名进行调用的.为了能够展示其与一般方法的差异,写一段简单的代码如下: class DemoClass: @classmethod def classPrint(self): print("class method"

  • python中yield的用法详解——最简单,最清晰的解释

    首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂的,我就想问没有有考虑过读者的感受. 接下来是正题: 首先,如果你还没有对yield有个初步分认识,那么你先把yield看做"return",这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了.看做return之后再把它

  • Python中itertools的用法详解

    iterator 循环器(iterator)是对象的容器,包含有多个对象.通过调用循环器的next()方法 (next()方法,在Python 3.x中),循环器将依次返回一个对象.直到所有的对象遍历穷尽,循环器将举出StopIteration错误. 在for i in iterator结构中,循环器每次返回的对象将赋予给i,直到循环结束.使用iter()内置函数,我们可以将诸如表.字典等容器变为循环器.比如 for i in iter([2, 4, 5, 6]): print i 标准库中的i

  • Python中logger日志模块详解

    1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息: print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据:logging则可以由开发者决定将信息输出到什么地方,以及怎么输出: Logger从来不直接实例化,经常通过logging模块级方法(Modu

随机推荐